IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i3p722-731.html
   My bibliography  Save this article

Simulation-based seismic loss estimation of seaport transportation system

Author

Listed:
  • Na, Ung Jin
  • Shinozuka, Masanobu

Abstract

Seaport transportation system is one of the major lifeline systems in modern society and its reliable operation is crucial for the well-being of the public. However, past experiences showed that earthquake damage to port components can severely disrupt terminal operation, and thus negatively impact on the regional economy. The main purpose of this study is to provide a methodology for estimating the effects of the earthquake on the performance of the operation system of a container terminal in seaports. To evaluate the economic loss of damaged system, an analytical framework is developed by integrating simulation models for terminal operation and fragility curves of port components in the context of seismic risk analysis. For this purpose, computerized simulation model is developed and verified with actual terminal operation records. Based on the analytical procedure to assess the seismic performance of the terminal, system fragility curves are also developed. This simulation-based loss estimation methodology can be used not only for estimating the seismically induced revenue loss but also serve as a decision-making tool to select specific seismic retrofit technique on the basis of benefit–cost analysis.

Suggested Citation

  • Na, Ung Jin & Shinozuka, Masanobu, 2009. "Simulation-based seismic loss estimation of seaport transportation system," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 722-731.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:3:p:722-731
    DOI: 10.1016/j.ress.2008.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008001956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adachi, Takao & Ellingwood, Bruce R., 2008. "Serviceability of earthquake-damaged water systems: Effects of electrical power availability and power backup systems on system vulnerability," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 78-88.
    2. Potter, Andrew & Yang, Biao & Lalwani, Chandra, 2007. "A simulation study of despatch bay performance in the steel processing industry," European Journal of Operational Research, Elsevier, vol. 179(2), pages 567-578, June.
    3. Nishimura, Etsuko & Imai, Akio & Papadimitriou, Stratos, 2001. "Berth allocation planning in the public berth system by genetic algorithms," European Journal of Operational Research, Elsevier, vol. 131(2), pages 282-292, June.
    4. Imai, Akio & Nishimura, Etsuko & Hattori, Masahiro & Papadimitriou, Stratos, 2007. "Berth allocation at indented berths for mega-containerships," European Journal of Operational Research, Elsevier, vol. 179(2), pages 579-593, June.
    5. Yun, Won Young & Choi, Yong Seok, 1999. "A simulation model for container-terminal operation analysis using an object-oriented approach," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 221-230, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Xinhu & Lam, Jasmine Siu Lee, 2019. "A fast reaction-based port vulnerability assessment: Case of Tianjin Port explosion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 11-33.
    2. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    3. Pitilakis, Kyriazis & Argyroudis, Sotiris & Fotopoulou, Stavroula & Karafagka, Stella & Kakderi, Kalliopi & Selva, Jacopo, 2019. "Application of stress test concepts for port infrastructures against natural hazards. The case of Thessaloniki port in Greece," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 240-257.
    4. Taflanidis, Alexandros A. & Loukogeorgaki, Eva & Angelides, Demos C., 2013. "Offshore wind turbine risk quantification/evaluation under extreme environmental conditions," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 19-32.
    5. Cao, Xinhu & Lam, Jasmine Siu Lee, 2018. "Simulation-based catastrophe-induced port loss estimation," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 1-12.
    6. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, Lu & Lee, Loo Hay & Chew, Ek Peng, 2011. "A decision model for berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 212(1), pages 54-68, July.
    2. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    3. Ya Xu & Qiushuang Chen & Xiongwen Quan, 2012. "Robust berth scheduling with uncertain vessel delay and handling time," Annals of Operations Research, Springer, vol. 192(1), pages 123-140, January.
    4. Giallombardo, Giovanni & Moccia, Luigi & Salani, Matteo & Vacca, Ilaria, 2010. "Modeling and solving the Tactical Berth Allocation Problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 232-245, February.
    5. Xu, Dongsheng & Li, Chung-Lun & Leung, Joseph Y.-T., 2012. "Berth allocation with time-dependent physical limitations on vessels," European Journal of Operational Research, Elsevier, vol. 216(1), pages 47-56.
    6. Branislav Dragović & Nam Kyu Park & Zoran Radmilović, 2006. "Ship-berth link performance evaluation: simulation and analytical approaches," Maritime Policy & Management, Taylor & Francis Journals, vol. 33(3), pages 281-299, July.
    7. Umang, Nitish & Bierlaire, Michel & Vacca, Ilaria, 2013. "Exact and heuristic methods to solve the berth allocation problem in bulk ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 14-31.
    8. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
    9. Shangyao Yan & Chung-Cheng Lu & Jun-Hsiao Hsieh & Han-Chun Lin, 2019. "A Dynamic and Flexible Berth Allocation Model with Stochastic Vessel Arrival Times," Networks and Spatial Economics, Springer, vol. 19(3), pages 903-927, September.
    10. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2013. "Marine container terminal configurations for efficient handling of mega-containerships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 141-158.
    11. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    12. C. Cheong & K. Tan & D. Liu & C. Lin, 2010. "Multi-objective and prioritized berth allocation in container ports," Annals of Operations Research, Springer, vol. 180(1), pages 63-103, November.
    13. Feng Li & Jiuh-Biing Sheu & Zi-You Gao, 2015. "Solving the Continuous Berth Allocation and Specific Quay Crane Assignment Problems with Quay Crane Coverage Range," Transportation Science, INFORMS, vol. 49(4), pages 968-989, November.
    14. Wang, Chong & Liu, Kaiyuan & Zhang, Canrong & Miao, Lixin, 2024. "Distributionally robust chance-constrained optimization for the integrated berth allocation and quay crane assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    15. Zhen, Lu, 2015. "Tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 928-944.
    16. Changchun Liu & Xi Xiang & Canrong Zhang & Li Zheng, 2016. "A Decision Model for Berth Allocation Under Uncertainty Considering Service Level Using an Adaptive Differential Evolution Algorithm," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(06), pages 1-28, December.
    17. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
    18. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    19. Changchun Liu & Xi Xiang & Li Zheng, 2017. "Two decision models for berth allocation problem under uncertainty considering service level," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 312-344, December.
    20. Arijit De & Saurabh Pratap & Akhilesh Kumar & M. K. Tiwari, 2020. "A hybrid dynamic berth allocation planning problem with fuel costs considerations for container terminal port using chemical reaction optimization approach," Annals of Operations Research, Springer, vol. 290(1), pages 783-811, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:3:p:722-731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.