IDEAS home Printed from https://ideas.repec.org/a/taf/marpmg/v33y2006i3p281-299.html
   My bibliography  Save this article

Ship-berth link performance evaluation: simulation and analytical approaches

Author

Listed:
  • Branislav Dragović
  • Nam Kyu Park
  • Zoran Radmilović

Abstract

In this paper we consider the performance evaluation of ship-berth link in port. The efficiency of operations and processes on the ship-berth link has been analysed through the basic operating parameters such as berth utilization, average number of ships in waiting line, average time that a ship spends in waiting line, average service time of a ship, average total time that a ship spends in port, average quay crane (QC) productivity and average number of QCs per ship. All the main performances of the ship-berth link are given. This is one of the problems faced by planners and terminal operators in ports. In this paper, we propose two models based on simulation and queuing theory, respectively, in order to determine the performance evaluation of ship-berth link in port. Numerical results and computational experiments are reported to evaluate the efficiency of the models for Pusan East Container Terminal (PECT).

Suggested Citation

  • Branislav Dragović & Nam Kyu Park & Zoran Radmilović, 2006. "Ship-berth link performance evaluation: simulation and analytical approaches," Maritime Policy & Management, Taylor & Francis Journals, vol. 33(3), pages 281-299, July.
  • Handle: RePEc:taf:marpmg:v:33:y:2006:i:3:p:281-299
    DOI: 10.1080/03088830600783277
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03088830600783277
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03088830600783277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlos F. Daganzo, 1990. "The Productivity of Multipurpose Seaport Terminals," Transportation Science, INFORMS, vol. 24(3), pages 205-216, August.
    2. Federico Sabria & Carlos F. Daganzo, 1989. "Approximate Expressions for Queueing Systems with Scheduled Arrivals and Established Service Order," Transportation Science, INFORMS, vol. 23(3), pages 159-165, August.
    3. Daganzo, Carlos F., 1989. "The crane scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 23(3), pages 159-175, June.
    4. Andrew Lim & Brian Rodrigues & Fei Xiao & Yi Zhu, 2004. "Crane scheduling with spatial constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(3), pages 386-406, April.
    5. Legato, Pasquale & Mazza, Rina M., 2001. "Berth planning and resources optimisation at a container terminal via discrete event simulation," European Journal of Operational Research, Elsevier, vol. 133(3), pages 537-547, September.
    6. Peterkofsky, Roy I. & Daganzo, Carlos F., 1990. "A branch and bound solution method for the crane scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 24(3), pages 159-172, June.
    7. Taniguchi, Eiichi & Noritake, Michihiko & Yamada, Tadashi & Izumitani, Toru, 1999. "Optimal size and location planning of public logistics terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 35(3), pages 207-222, September.
    8. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2001. "The dynamic berth allocation problem for a container port," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 401-417, May.
    9. Vis, Iris F. A. & de Koster, Rene, 2003. "Transshipment of containers at a container terminal: An overview," European Journal of Operational Research, Elsevier, vol. 147(1), pages 1-16, May.
    10. Shabayek, A. A. & Yeung, W. W., 2002. "A simulation model for the Kwai Chung container terminals in Hong Kong," European Journal of Operational Research, Elsevier, vol. 140(1), pages 1-11, July.
    11. Nishimura, Etsuko & Imai, Akio & Papadimitriou, Stratos, 2001. "Berth allocation planning in the public berth system by genetic algorithms," European Journal of Operational Research, Elsevier, vol. 131(2), pages 282-292, June.
    12. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2003. "Berth allocation with service priority," Transportation Research Part B: Methodological, Elsevier, vol. 37(5), pages 437-457, June.
    13. Chin-Yuan Chu & Wen-Chih Huang, 2002. "Aggregates cranes handling capacity of container terminals: the port of Kaohsiung," Maritime Policy & Management, Taylor & Francis Journals, vol. 29(4), pages 341-350.
    14. Imai, Akio & Sun, Xin & Nishimura, Etsuko & Papadimitriou, Stratos, 2005. "Berth allocation in a container port: using a continuous location space approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 199-221, March.
    15. Yun, Won Young & Choi, Yong Seok, 1999. "A simulation model for container-terminal operation analysis using an object-oriented approach," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 221-230, March.
    16. Kim, Kap Hwan & Park, Young-Man, 2004. "A crane scheduling method for port container terminals," European Journal of Operational Research, Elsevier, vol. 156(3), pages 752-768, August.
    17. Branislav Dragović & Nam Kyu Park & Zoran Radmilović & Vladislav Maraš, 2005. "Simulation Modelling of Ship-Berth Link With Priority Service," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 7(4), pages 316-335, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    2. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    3. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    4. Charis Ntakolia & Michalis Douloumpekis & Christos Papaleonidas & Violetta Tsiampa & Dimitrios V. Lyridis, 2023. "A Stochastic Modelling and Optimization for the Design of an LNG Refuelling System in the Piraeus Port Region," SN Operations Research Forum, Springer, vol. 4(3), pages 1-32, September.
    5. Frank Meisel & Christian Bierwirth, 2013. "A Framework for Integrated Berth Allocation and Crane Operations Planning in Seaport Container Terminals," Transportation Science, INFORMS, vol. 47(2), pages 131-147, May.
    6. Roy, D. & de Koster, M.B.M., 2014. "Modeling and Design of Container Terminal Operations," ERIM Report Series Research in Management ERS-2014-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Debjit Roy & René De Koster & René Bekker, 2020. "Modeling and Design of Container Terminal Operations," Operations Research, INFORMS, vol. 68(3), pages 686-715, May.
    8. Türkoğulları, Yavuz B. & Taşkın, Z. Caner & Aras, Necati & Altınel, İ. Kuban, 2016. "Optimal berth allocation, time-variant quay crane assignment and scheduling with crane setups in container terminals," European Journal of Operational Research, Elsevier, vol. 254(3), pages 985-1001.
    9. Branislav Dragovic & Nenad Dj. Zrnic, 2011. "A Queuing Model Study of Port Performance Evolution," Analele Universitatii "Eftimie Murgu" Resita Fascicola de Inginerie, "Eftimie Murgu" University of Resita, vol. 2(XVIII), pages 65-76, December.
    10. Cao, Xinhu & Lam, Jasmine Siu Lee, 2018. "Simulation-based catastrophe-induced port loss estimation," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 1-12.
    11. Branislav Dragovic & Nenad Dj. Zrnic & Elen Twrdy & Dong-Keun Rooy, 2010. "Ship Traffic Modeling and Performance Evaluation in Container Port," Analele Universitatii "Eftimie Murgu" Resita Fascicola de Inginerie, "Eftimie Murgu" University of Resita, vol. 2(XVII), pages 127-138, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    2. T. R. Lalita & G. S. R. Murthy, 2022. "Compact ILP formulations for a class of solutions to berth allocation and quay crane scheduling problems," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 413-439, March.
    3. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
    4. Zeng, Qingcheng & Yang, Zhongzhen & Lai, Luyuan, 2009. "Models and algorithms for multi-crane oriented scheduling method in container terminals," Transport Policy, Elsevier, vol. 16(5), pages 271-278, September.
    5. Jiyin Liu & Yat‐wah Wan & Lei Wang, 2006. "Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 60-74, February.
    6. Hansen, Pierre & Oguz, Ceyda & Mladenovic, Nenad, 2008. "Variable neighborhood search for minimum cost berth allocation," European Journal of Operational Research, Elsevier, vol. 191(3), pages 636-649, December.
    7. Zhen, Lu & Lee, Loo Hay & Chew, Ek Peng, 2011. "A decision model for berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 212(1), pages 54-68, July.
    8. J Blazewicz & T C E Cheng & M Machowiak & C Oguz, 2011. "Berth and quay crane allocation: a moldable task scheduling model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1189-1197, July.
    9. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    10. Giallombardo, Giovanni & Moccia, Luigi & Salani, Matteo & Vacca, Ilaria, 2010. "Modeling and solving the Tactical Berth Allocation Problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 232-245, February.
    11. Jean-François Cordeau & Gilbert Laporte & Pasquale Legato & Luigi Moccia, 2005. "Models and Tabu Search Heuristics for the Berth-Allocation Problem," Transportation Science, INFORMS, vol. 39(4), pages 526-538, November.
    12. Lee, Yusin & Chen, Chuen-Yih, 2009. "An optimization heuristic for the berth scheduling problem," European Journal of Operational Research, Elsevier, vol. 196(2), pages 500-508, July.
    13. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    14. Feng Li & Jiuh-Biing Sheu & Zi-You Gao, 2015. "Solving the Continuous Berth Allocation and Specific Quay Crane Assignment Problems with Quay Crane Coverage Range," Transportation Science, INFORMS, vol. 49(4), pages 968-989, November.
    15. Wang, Chong & Liu, Kaiyuan & Zhang, Canrong & Miao, Lixin, 2024. "Distributionally robust chance-constrained optimization for the integrated berth allocation and quay crane assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    16. Zhen, Lu, 2015. "Tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 928-944.
    17. Luigi Moccia & Jean‐François Cordeau & Manlio Gaudioso & Gilbert Laporte, 2006. "A branch‐and‐cut algorithm for the quay crane scheduling problem in a container terminal," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 45-59, February.
    18. Changchun Liu & Xi Xiang & Li Zheng, 2017. "Two decision models for berth allocation problem under uncertainty considering service level," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 312-344, December.
    19. Changchun Liu & Xi Xiang & Li Zheng, 2020. "A two-stage robust optimization approach for the berth allocation problem under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 425-452, June.
    20. Ursavas, Evrim & Zhu, Stuart X., 2016. "Optimal policies for the berth allocation problem under stochastic nature," European Journal of Operational Research, Elsevier, vol. 255(2), pages 380-387.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:marpmg:v:33:y:2006:i:3:p:281-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TMPM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.