IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i2p479-489.html
   My bibliography  Save this article

Machine and component residual life estimation through the application of neural networks

Author

Listed:
  • Herzog, M.A.
  • Marwala, T.
  • Heyns, P.S.

Abstract

This paper concerns the use of neural networks for predicting the residual life of machines and components. In addition, the advantage of using condition-monitoring data to enhance the predictive capability of these neural networks was also investigated. A number of neural network variations were trained and tested with the data of two different reliability-related datasets. The first dataset represents the renewal case where the failed unit is repaired and restored to a good-as-new condition. Data were collected in the laboratory by subjecting a series of similar test pieces to fatigue loading with a hydraulic actuator. The average prediction error of the various neural networks being compared varied from 431 to 841s on this dataset, where test pieces had a characteristic life of 8971s. The second dataset were collected from a group of pumps used to circulate a water and magnetite solution within a plant. The data therefore originated from a repaired system affected by reliability degradation. When optimized, the multi-layer perceptron neural networks trained with the Levenberg–Marquardt algorithm and the general regression neural network produced a sum-of-squares error within 11.1% of each other for the renewal dataset. The small number of inputs and poorly mapped input space on the second dataset meant that much larger errors were recorded on some of the test data. The potential for using neural networks for residual life prediction and the advantage of incorporating condition-based data into the model was nevertheless proven for both examples.

Suggested Citation

  • Herzog, M.A. & Marwala, T. & Heyns, P.S., 2009. "Machine and component residual life estimation through the application of neural networks," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 479-489.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:479-489
    DOI: 10.1016/j.ress.2008.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008001701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pham, Hoang & Wang, Hongzhou, 1996. "Imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 94(3), pages 425-438, November.
    2. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gómez, M.J. & Castejón, C. & García-Prada, J.C., 2016. "Automatic condition monitoring system for crack detection in rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 239-247.
    2. Jain, Amit Kumar & Lad, Bhupesh Kumar, 2020. "Prognosticating RULs while exploiting the future characteristics of operating profiles," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Ilgin, Mehmet Ali & Gupta, Surendra M., 2011. "Performance improvement potential of sensor embedded products in environmental supply chains," Resources, Conservation & Recycling, Elsevier, vol. 55(6), pages 580-592.
    4. Ondemir, Onder & Gupta, Surendra M., 2014. "A multi-criteria decision making model for advanced repair-to-order and disassembly-to-order system," European Journal of Operational Research, Elsevier, vol. 233(2), pages 408-419.
    5. Ammar Y. Alqahtani & Surendra M. Gupta, 2017. "One-Dimensional Renewable Warranty Management within Sustainable Supply Chain," Resources, MDPI, vol. 6(2), pages 1-26, April.
    6. Fang, Xiaolei & Zhou, Rensheng & Gebraeel, Nagi, 2015. "An adaptive functional regression-based prognostic model for applications with missing data," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 266-274.
    7. Wang, Zhaoqiang & Hu, Changhua & Wang, Wenbin & Zhou, Zhijie & Si, Xiaosheng, 2014. "A case study of remaining storage life prediction using stochastic filtering with the influence of condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 186-195.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    2. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    3. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    4. Belyi, Dmitriy & Popova, Elmira & Morton, David P. & Damien, Paul, 2017. "Bayesian failure-rate modeling and preventive maintenance optimization," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1085-1093.
    5. Kurt, Murat & Kharoufeh, Jeffrey P., 2010. "Optimally maintaining a Markovian deteriorating system with limited imperfect repairs," European Journal of Operational Research, Elsevier, vol. 205(2), pages 368-380, September.
    6. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    7. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2017. "Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 249-261.
    8. Toon Vanderschueren & Robert Boute & Tim Verdonck & Bart Baesens & Wouter Verbeke, 2022. "Prescriptive maintenance with causal machine learning," Papers 2206.01562, arXiv.org.
    9. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.
    10. Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.
    11. Francesco Corman & Sander Kraijema & Milinko Godjevac & Gabriel Lodewijks, 2017. "Optimizing preventive maintenance policy: A data-driven application for a light rail braking system," Journal of Risk and Reliability, , vol. 231(5), pages 534-545, October.
    12. Zitrou, A. & Bedford, T. & Daneshkhah, A., 2013. "Robustness of maintenance decisions: Uncertainty modelling and value of information," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 60-71.
    13. Shafiee, Mahmood & Chukova, Stefanka, 2013. "Maintenance models in warranty: A literature review," European Journal of Operational Research, Elsevier, vol. 229(3), pages 561-572.
    14. Kenné, Jean-Pierre & Gharbi, Ali, 2018. "Production and replacement policies for a deteriorating manufacturing system under random demand and qualityAuthor-Name: Ouaret, Samir," European Journal of Operational Research, Elsevier, vol. 264(2), pages 623-636.
    15. Vanderschueren, Toon & Boute, Robert & Verdonck, Tim & Baesens, Bart & Verbeke, Wouter, 2023. "Optimizing the preventive maintenance frequency with causal machine learning," International Journal of Production Economics, Elsevier, vol. 258(C).
    16. Anahita Khojandi & Lisa M. Maillart & Oleg A. Prokopyev & Mark S. Roberts & Samir F. Saba, 2018. "Dynamic Abandon/Extract Decisions for Failed Cardiac Leads," Management Science, INFORMS, vol. 64(2), pages 633-651, February.
    17. Taghipour, Sharareh & Banjevic, Dragan & Jardine, Andrew K.S., 2010. "Periodic inspection optimization model for a complex repairable system," Reliability Engineering and System Safety, Elsevier, vol. 95(9), pages 944-952.
    18. Gámiz, María Luz & Limnios, Nikolaos & Segovia-García, María del Carmen, 2023. "Hidden markov models in reliability and maintenance," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1242-1255.
    19. Sarang Deo & Seyed Iravani & Tingting Jiang & Karen Smilowitz & Stephen Samuelson, 2013. "Improving Health Outcomes Through Better Capacity Allocation in a Community-Based Chronic Care Model," Operations Research, INFORMS, vol. 61(6), pages 1277-1294, December.
    20. Hu, Jiawen & Jiang, Zuhua & Liao, Haitao, 2017. "Preventive maintenance of a single machine system working under piecewise constant operating condition," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 105-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:479-489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.