IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v262y2017i3p1085-1093.html
   My bibliography  Save this article

Bayesian failure-rate modeling and preventive maintenance optimization

Author

Listed:
  • Belyi, Dmitriy
  • Popova, Elmira
  • Morton, David P.
  • Damien, Paul

Abstract

New results are derived for the optimal preventive maintenance schedule of a single item over a finite horizon, based on Bayesian models of a failure rate function. Two types of failure rate functions—increasing and bathtub shapes—are considered. For both cases, optimality conditions and efficient algorithms to find an optimal maintenance schedule are given. A Bayesian parametric model for bathtub-shaped failure rate functions is used, while the class of increasing failure rate functions are tackled by an extended gamma process. We illustrate both approaches using real failure time data from the South Texas Project Nuclear Operating Company in Bay City, Texas.

Suggested Citation

  • Belyi, Dmitriy & Popova, Elmira & Morton, David P. & Damien, Paul, 2017. "Bayesian failure-rate modeling and preventive maintenance optimization," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1085-1093.
  • Handle: RePEc:eee:ejores:v:262:y:2017:i:3:p:1085-1093
    DOI: 10.1016/j.ejor.2017.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717303521
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jardine, A. K. S. & Buzacott, J. A., 1985. "Equipment reliability and maintenance," European Journal of Operational Research, Elsevier, vol. 19(3), pages 285-296, March.
    2. John J. McCall, 1965. "Maintenance Policies for Stochastically Failing Equipment: A Survey," Management Science, INFORMS, vol. 11(5), pages 493-524, March.
    3. Pham, Hoang & Wang, Hongzhou, 1996. "Imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 94(3), pages 425-438, November.
    4. Philip J. Boland & Frank Proschan, 1982. "Periodic Replacement with Increasing Minimal Repair Costs at Failure," Operations Research, INFORMS, vol. 30(6), pages 1183-1189, December.
    5. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    6. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    7. Jason R.W. Merrick & Refik Soyer & Thomas A. Mazzuchi, 2005. "Are Maintenance Practices for Railroad Tracks Effective?," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 17-25, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ravago, Majah-Leah V. & Jandoc, Karl Robert & Pormon, Miah Maye, 2023. "Reliability and forced outages: Survival analysis with recurrent events," Japan and the World Economy, Elsevier, vol. 68(C).
    2. Insua, David Rios & Ruggeri, Fabrizio & Soyer, Refik & Wilson, Simon, 2020. "Advances in Bayesian decision making in reliability," European Journal of Operational Research, Elsevier, vol. 282(1), pages 1-18.
    3. Antonio Pievatolo & Fabrizio Ruggeri & Refik Soyer & Simon Wilson, 2021. "Decisions in Risk and Reliability: An Explanatory Perspective," Stats, MDPI, vol. 4(2), pages 1-23, March.
    4. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    5. Milton Fonseca Junior & Ubiratan Holanda Bezerra & Jandecy Cabral Leite & Jorge Laureano Moya Rodríguez, 2017. "Maintenance Tools applied to Electric Generators to Improve Energy Efficiency and Power Quality of Thermoelectric Power Plants," Energies, MDPI, vol. 10(8), pages 1-21, July.
    6. Zhao, Yunfei & Gao, Wei & Smidts, Carol, 2021. "Sequential Bayesian inference of transition rates in the hidden Markov model for multi-state system degradation," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    7. Dursun, İpek & Akçay, Alp & van Houtum, Geert-Jan, 2022. "Age-based maintenance under population heterogeneity: Optimal exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1007-1020.
    8. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    9. Hongming Zhou & Sufen Wang & Faqun Qi & Shun Gao, 2022. "Maintenance modeling and operation parameters optimization for complex production line under reliability constraints," Annals of Operations Research, Springer, vol. 311(1), pages 507-523, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    2. Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.
    3. Aghezzaf, El-Houssaine & Khatab, Abdelhakim & Tam, Phuoc Le, 2016. "Optimizing production and imperfect preventive maintenance planning׳s integration in failure-prone manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 190-198.
    4. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    5. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    6. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.
    7. Hoang Pham & Hongzhou Wang, 2000. "Optimal (τ, T) opportunistic maintenance of a k‐out‐of‐n:G system with imperfect PM and partial failure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(3), pages 223-239, April.
    8. Insua, David Rios & Ruggeri, Fabrizio & Soyer, Refik & Wilson, Simon, 2020. "Advances in Bayesian decision making in reliability," European Journal of Operational Research, Elsevier, vol. 282(1), pages 1-18.
    9. Ruey Yeh & Cheng-Kang Chen, 2006. "Periodical Preventive-Maintenance Contract for a Leased Facility with Weibull Life-Time," Quality & Quantity: International Journal of Methodology, Springer, vol. 40(2), pages 303-313, April.
    10. Francesco Corman & Sander Kraijema & Milinko Godjevac & Gabriel Lodewijks, 2017. "Optimizing preventive maintenance policy: A data-driven application for a light rail braking system," Journal of Risk and Reliability, , vol. 231(5), pages 534-545, October.
    11. Alireza Sabouri & Woonghee Tim Huh & Steven M. Shechter, 2017. "Screening Strategies for Patients on the Kidney Transplant Waiting List," Operations Research, INFORMS, vol. 65(5), pages 1131-1146, October.
    12. Vanderschueren, Toon & Boute, Robert & Verdonck, Tim & Baesens, Bart & Verbeke, Wouter, 2023. "Optimizing the preventive maintenance frequency with causal machine learning," International Journal of Production Economics, Elsevier, vol. 258(C).
    13. Hu, Jiawen & Jiang, Zuhua & Liao, Haitao, 2017. "Preventive maintenance of a single machine system working under piecewise constant operating condition," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 105-115.
    14. Huang, Yeu-Shiang & Gau, Wei-Yo & Ho, Jyh-Wen, 2015. "Cost analysis of two-dimensional warranty for products with periodic preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 51-58.
    15. Aven, Terje & Castro, I.T., 2008. "A minimal repair replacement model with two types of failure and a safety constraint," European Journal of Operational Research, Elsevier, vol. 188(2), pages 506-515, July.
    16. David T. Abdul‐Malak & Jeffrey P. Kharoufeh & Lisa M. Maillart, 2019. "Maintaining systems with heterogeneous spare parts," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(6), pages 485-501, September.
    17. Ming-Yi You & Guang Meng, 2012. "A modularized framework for predictive maintenance scheduling," Journal of Risk and Reliability, , vol. 226(4), pages 380-391, August.
    18. You, Ming-Yi & Li, Hongguang & Meng, Guang, 2011. "Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 590-598.
    19. Lin, Zu-Liang & Huang, Yeu-Shiang & Fang, Chih-Chiang, 2015. "Non-periodic preventive maintenance with reliability thresholds for complex repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 145-156.
    20. Jaturonnatee, J. & Murthy, D.N.P. & Boondiskulchok, R., 2006. "Optimal preventive maintenance of leased equipment with corrective minimal repairs," European Journal of Operational Research, Elsevier, vol. 174(1), pages 201-215, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:262:y:2017:i:3:p:1085-1093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.