IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i2p370-381.html
   My bibliography  Save this article

Maintenance and replacement policies under technological obsolescence

Author

Listed:
  • Clavareau, Julien
  • Labeau, Pierre-Etienne

Abstract

The technological obsolescence of a unit is characterized by the existence of challenger units displaying identical functionalities, but with higher performances. This paper aims to define and model in a realistic way, possible maintenance policies of a system including replacement strategies when one type of challenger unit is available. The comparison of these possible strategies is performed based on a Monte Carlo estimation of the costs they incur.

Suggested Citation

  • Clavareau, Julien & Labeau, Pierre-Etienne, 2009. "Maintenance and replacement policies under technological obsolescence," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 370-381.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:370-381
    DOI: 10.1016/j.ress.2008.03.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183200800121X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.03.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kijima, Masaaki & Morimura, Hidenori & Suzuki, Yasusuke, 1988. "Periodical replacement problem without assuming minimal repair," European Journal of Operational Research, Elsevier, vol. 37(2), pages 194-203, November.
    2. Wu, Shaomin & Clements-Croome, Derek, 2005. "Preventive maintenance models with random maintenance quality," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 99-105.
    3. van Delft, Ch. & Vial, J. P., 1996. "Discounted costs, obsolescence and planned stockouts with the EOQ formula," International Journal of Production Economics, Elsevier, vol. 44(3), pages 255-265, July.
    4. Sophie Mercier & Pierre‐Etienne Labeau, 2004. "Optimal replacement policy for a series system with obsolescence," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 20(1), pages 73-91, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, T.P.K. & Castanier, Bruno & Yeung, Thomas G., 2014. "Maintaining a system subject to uncertain technological evolution," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 56-65.
    2. Khanh T.P. Nguyen & Thomas Yeung & Bruno Castanier, 2017. "Acquisition of new technology information for maintenance and replacement policies," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2212-2231, April.
    3. Nguyen, Dinh Tuan & Dijoux, Yann & Fouladirad, Mitra, 2017. "Analytical properties of an imperfect repair model and application in preventive maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 256(2), pages 439-453.
    4. Westerweel, Bram & Basten, Rob J.I. & van Houtum, Geert-Jan, 2018. "Traditional or Additive Manufacturing? Assessing Component Design Options through Lifecycle Cost Analysis," European Journal of Operational Research, Elsevier, vol. 270(2), pages 570-585.
    5. Nguyen, T.P. Khanh & Yeung, Thomas G. & Castanier, Bruno, 2013. "Optimal maintenance and replacement decisions under technological change with consideration of spare parts inventories," International Journal of Production Economics, Elsevier, vol. 143(2), pages 472-477.
    6. Mellal, Mohamed Arezki, 2020. "Obsolescence – A review of the literature," Technology in Society, Elsevier, vol. 63(C).
    7. Öner, K.B. & Kiesmüller, G.P. & van Houtum, G.J., 2015. "On the upgrading policy after the redesign of a component for reliability improvement," European Journal of Operational Research, Elsevier, vol. 244(3), pages 867-880.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clavareau, Julien & Labeau, Pierre-Etienne, 2009. "A Petri net-based modelling of replacement strategies under technological obsolescence," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 357-369.
    2. Chaoqun Duan & Chao Deng & Bingran Wang, 2019. "Multi-phase sequential preventive maintenance scheduling for deteriorating repairable systems," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1779-1793, April.
    3. P-E Labeau & M-C Segovia, 2011. "Effective age models for imperfect maintenance," Journal of Risk and Reliability, , vol. 225(2), pages 117-130, June.
    4. Zhou, Yu & Kou, Gang & Xiao, Hui & Peng, Yi & Alsaadi, Fawaz E., 2020. "Sequential imperfect preventive maintenance model with failure intensity reduction with an application to urban buses," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    5. Wu, Shaomin, 2012. "Assessing maintenance contracts when preventive maintenance is outsourced," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 66-72.
    6. Jaber, Mohamad Y. & Bonney, Maurice, 2001. "Economic lot sizing with learning and continuous time discounting: Is it significant?," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 135-143, May.
    7. Dewan, Isha & Dijoux, Yann, 2015. "Modelling repairable systems with an early life under competing risks and asymmetric virtual age," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 215-224.
    8. Love, C. E. & Zhang, Z. G. & Zitron, M. A. & Guo, R., 2000. "A discrete semi-Markov decision model to determine the optimal repair/replacement policy under general repairs," European Journal of Operational Research, Elsevier, vol. 125(2), pages 398-409, September.
    9. Dehayem Nodem, F.I. & Kenné, J.P. & Gharbi, A., 2011. "Simultaneous control of production, repair/replacement and preventive maintenance of deteriorating manufacturing systems," International Journal of Production Economics, Elsevier, vol. 134(1), pages 271-282, November.
    10. Wang, Xiaolin & Li, Lishuai & Xie, Min, 2020. "An unpunctual preventive maintenance policy under two-dimensional warranty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 304-318.
    11. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    12. Kahle, Waltraud, 2007. "Optimal maintenance policies in incomplete repair models," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 563-565.
    13. Tanwar, Monika & Rai, Rajiv N. & Bolia, Nomesh, 2014. "Imperfect repair modeling using Kijima type generalized renewal process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 24-31.
    14. Wenke Gao, 2020. "An extended geometric process and its application in replacement policy," Journal of Risk and Reliability, , vol. 234(1), pages 88-103, February.
    15. A H Shirmohammadi & C E Love & Z G Zhang, 2003. "An optimal maintenance policy for skipping imminent preventive maintenance for systems experiencing random failures," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 40-47, January.
    16. A Ponchet & M Fouladirad & A Grall, 2011. "Maintenance policy on a finite time span for a gradually deteriorating system with imperfect improvements," Journal of Risk and Reliability, , vol. 225(2), pages 105-116, June.
    17. Esmat Baghdadi & Mahmood Shafiee & Babakalli Alkali, 2022. "Upgrading Strategy, Warranty Policy and Pricing Decisions for Remanufactured Products Sold with Two-Dimensional Warranty," Sustainability, MDPI, vol. 14(12), pages 1-15, June.
    18. Beutner, Eric, 2023. "A review of effective age models and associated non- and semiparametric methods," Econometrics and Statistics, Elsevier, vol. 28(C), pages 105-119.
    19. Yan, Tao & Lei, Yaguo & Wang, Biao & Han, Tianyu & Si, Xiaosheng & Li, Naipeng, 2020. "Joint maintenance and spare parts inventory optimization for multi-unit systems considering imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    20. Wang, Wenbin, 2011. "An inspection model based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 838-848.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:370-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.