IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v128y2014icp56-65.html
   My bibliography  Save this article

Maintaining a system subject to uncertain technological evolution

Author

Listed:
  • Nguyen, T.P.K.
  • Castanier, Bruno
  • Yeung, Thomas G.

Abstract

Maintenance decisions can be directly affected by the introduction of a new asset on the market, especially when the new asset technology could increase the expected profit. However new technology has a high degree of uncertainty that must be considered such as, e.g., its appearance time on the market, the expected revenue and the purchase cost. In this way, maintenance optimization can be seen as an investment problem where the repair decision is an option for postponing a replacement decision in order to wait for a potential new asset. Technology investment decisions are usually based primarily on strategic parameters such as current probability and expected future benefits while maintenance decisions are based on “functional†parameters such as deterioration levels of the current system and associated maintenance costs. In this paper, we formulate a new combined mathematical optimization framework for taking into account both maintenance and replacement decisions when the new asset is subject to technological improvement. The decision problem is modelled as a non-stationary Markov decision process. Structural properties of the optimal policy and forecast horizon length are then derived in order to guarantee decision optimality and robustness over the infinite horizon. Finally, the performance of our model is highlighted through numerical examples.

Suggested Citation

  • Nguyen, T.P.K. & Castanier, Bruno & Yeung, Thomas G., 2014. "Maintaining a system subject to uncertain technological evolution," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 56-65.
  • Handle: RePEc:eee:reensy:v:128:y:2014:i:c:p:56-65
    DOI: 10.1016/j.ress.2014.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014000660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huisman, Kuno J. M. & Kort, Peter M., 2004. "Strategic technology adoption taking into account future technological improvements: A real options approach," European Journal of Operational Research, Elsevier, vol. 159(3), pages 705-728, December.
    2. Nicolai, R.P. & Frenk, J.B.G. & Dekker, R., 2007. "Modelling and optimizing imperfect maintenance of coatings on steel structures," Econometric Institute Research Papers EI 2007-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. G. Bethuyne, 2002. "The Timing of Technology Adoption by a Cost-minimizing Firm," Journal of Economics, Springer, vol. 76(2), pages 123-154, June.
    4. Clavareau, Julien & Labeau, Pierre-Etienne, 2009. "Maintenance and replacement policies under technological obsolescence," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 370-381.
    5. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    6. Sophie Mercier, 2008. "Optimal replacement policy for obsolete components with general failure rates," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(3), pages 221-235, May.
    7. Clavareau, Julien & Labeau, Pierre-Etienne, 2009. "A Petri net-based modelling of replacement strategies under technological obsolescence," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 357-369.
    8. Suresh K. Nair, 1995. "Modeling Strategic Investment Decisions Under Sequential Technological Change," Management Science, INFORMS, vol. 41(2), pages 282-297, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    2. Mellal, Mohamed Arezki, 2020. "Obsolescence – A review of the literature," Technology in Society, Elsevier, vol. 63(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Öner, K.B. & Kiesmüller, G.P. & van Houtum, G.J., 2015. "On the upgrading policy after the redesign of a component for reliability improvement," European Journal of Operational Research, Elsevier, vol. 244(3), pages 867-880.
    2. Nguyen, T.P. Khanh & Yeung, Thomas G. & Castanier, Bruno, 2013. "Optimal maintenance and replacement decisions under technological change with consideration of spare parts inventories," International Journal of Production Economics, Elsevier, vol. 143(2), pages 472-477.
    3. Mellal, Mohamed Arezki, 2020. "Obsolescence – A review of the literature," Technology in Society, Elsevier, vol. 63(C).
    4. Khanh T.P. Nguyen & Thomas Yeung & Bruno Castanier, 2017. "Acquisition of new technology information for maintenance and replacement policies," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2212-2231, April.
    5. Mitra Fouladirad & Antoine Grall, 2015. "Monitoring and condition-based maintenance with abrupt change in a system’s deterioration rate," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(12), pages 2183-2194, September.
    6. Chronopoulos, Michail & Lumbreras, Sara, 2017. "Optimal regime switching under risk aversion and uncertainty," European Journal of Operational Research, Elsevier, vol. 256(2), pages 543-555.
    7. Ponchet, Amélie & Fouladirad, Mitra & Grall, Antoine, 2010. "Assessment of a maintenance model for a multi-deteriorating mode system," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1244-1254.
    8. Tinga, Tiedo, 2010. "Application of physical failure models to enable usage and load based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1061-1075.
    9. Nguyen, Dinh Tuan & Dijoux, Yann & Fouladirad, Mitra, 2017. "Analytical properties of an imperfect repair model and application in preventive maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 256(2), pages 439-453.
    10. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    11. Arve, Malin & Zwart, Gijsbert, 2023. "Optimal procurement and investment in new technologies under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    12. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    13. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    14. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    15. Billette de Villemeur, Etienne & Ruble, Richard & Versaevel, Bruno, 2014. "Innovation and imitation incentives in dynamic duopoly," MPRA Paper 59453, University Library of Munich, Germany.
    16. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    17. Sun, Bo & Fan, Boyang & Zhang, Yifan & Xie, Jingdong, 2023. "Investment decisions and strategies of China's energy storage technology under policy uncertainty: A real options approach," Energy, Elsevier, vol. 278(PA).
    18. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    19. Asadi, Amin & Nurre Pinkley, Sarah, 2021. "A stochastic scheduling, allocation, and inventory replenishment problem for battery swap stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    20. Min-Tsai Lai, 2007. "Periodical Replacement Model for a Multi-Unit System Subject to Failure Rate Interaction," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(3), pages 401-411, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:128:y:2014:i:c:p:56-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.