IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i3p236-246.html
   My bibliography  Save this article

Discounted cost model for condition-based maintenance optimization

Author

Listed:
  • van der Weide, J.A.M.
  • Pandey, M.D.
  • van Noortwijk, J.M.

Abstract

This paper presents methods to evaluate the reliability and optimize the maintenance of engineering systems that are damaged by shocks or transients arriving randomly in time and overall degradation is modeled as a cumulative stochastic point process. The paper presents a conceptually clear and comprehensive derivation of formulas for computing the discounted cost associated with a maintenance policy combining both condition-based and age-based criteria for preventive maintenance. The proposed discounted cost model provides a more realistic basis for optimizing the maintenance policies than those based on the asymptotic, non-discounted cost rate criterion.

Suggested Citation

  • van der Weide, J.A.M. & Pandey, M.D. & van Noortwijk, J.M., 2010. "Discounted cost model for condition-based maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 236-246.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:3:p:236-246
    DOI: 10.1016/j.ress.2009.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832009002415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2009.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philip J. Boland & Frank Proschan, 1983. "Optimum Replacement of a System Subject to Shocks," Operations Research, INFORMS, vol. 31(4), pages 697-704, August.
    2. Richard C. Morey, 1966. "Some Stochastic Properties of a Compound-Renewal Damage Model," Operations Research, INFORMS, vol. 14(5), pages 902-908, October.
    3. Finkelstein, Maxim, 2007. "Shocks in homogeneous and heterogeneous populations," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 569-574.
    4. Toshio Nakagawa, 2005. "Maintenance Theory of Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-221-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    2. Ece Zeliha Demirci & Joachim Arts & Geert-Jan Van Houtum, 2022. "A restless bandit approach for capacitated condition based maintenance scheduling," DEM Discussion Paper Series 22-01, Department of Economics at the University of Luxembourg.
    3. Rafiee, Koosha & Feng, Qianmei & Coit, David W., 2017. "Reliability assessment of competing risks with generalized mixed shock models," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 1-11.
    4. Finkelstein, Maxim & Marais, Francois, 2010. "On terminating Poisson processes in some shock models," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 874-879.
    5. Vu, Hai Canh & Do, Phuc & Barros, Anne & Bérenguer, Christophe, 2014. "Maintenance grouping strategy for multi-component systems with dynamic contexts," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 233-249.
    6. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    7. Yang, David Y. & Frangopol, Dan M., 2019. "Life-cycle management of deteriorating civil infrastructure considering resilience to lifetime hazards: A general approach based on renewal-reward processes," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 197-212.
    8. Xi, Zhimin & Jing, Rong & Wang, Pingfeng & Hu, Chao, 2014. "A copula-based sampling method for data-driven prognostics," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 72-82.
    9. Hu, Chao & Youn, Byeng D. & Wang, Pingfeng & Taek Yoon, Joung, 2012. "Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 120-135.
    10. Tang, Yang & Liu, Qingyou & Jing, Jiajia & Yang, Yan & Zou, Zhengwei, 2017. "A framework for identification of maintenance significant items in reliability centered maintenance," Energy, Elsevier, vol. 118(C), pages 1295-1303.
    11. Tamilselvan, Prasanna & Wang, Pingfeng, 2013. "Failure diagnosis using deep belief learning based health state classification," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 124-135.
    12. Dashti, Reza & Yousefi, Shaghayegh, 2013. "Reliability based asset assessment in electrical distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 129-136.
    13. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2013. "Optimal policies for cumulative damage models with maintenance last and first," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 50-59.
    14. Ait-Ali , Abderrahman & Odolinski, Kristofer & Pålsson, Björn & Torstensson, Peter, 2023. "Evaluating the mix of maintenance activities on railway crossings with respect to life-cycle costs," Working Papers 2023:6, Swedish National Road & Transport Research Institute (VTI).
    15. Tinga, Tiedo, 2010. "Application of physical failure models to enable usage and load based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1061-1075.
    16. van der Weide, J.A.M. & Pandey, M.D., 2011. "Stochastic analysis of shock process and modeling of condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 619-626.
    17. A Ponchet & M Fouladirad & A Grall, 2011. "Maintenance policy on a finite time span for a gradually deteriorating system with imperfect improvements," Journal of Risk and Reliability, , vol. 225(2), pages 105-116, June.
    18. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    19. Shafiee, Mahmood & Finkelstein, Maxim, 2015. "An optimal age-based group maintenance policy for multi-unit degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 230-238.
    20. Van Horenbeek, Adriaan & Van Ostaeyen, Joris & Duflou, Joost R. & Pintelon, Liliane, 2013. "Quantifying the added value of an imperfectly performing condition monitoring system—Application to a wind turbine gearbox," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 45-57.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George, 2019. "Extended optimal preventive replacement policies with random working cycle," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 398-415.
    2. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    3. Chin-Chih Chang, 2023. "Optimal maintenance policy for a k-out-of-n system with replacement first and last," Annals of Operations Research, Springer, vol. 323(1), pages 31-43, April.
    4. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    5. Ali, Sajid & Pievatolo, Antonio, 2018. "Time and magnitude monitoring based on the renewal reward process," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 97-107.
    6. Torrado, Nuria, 2022. "Optimal component-type allocation and replacement time policies for parallel systems having multi-types dependent components," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    7. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    8. Safaei, Fatemeh & Taghipour, Sharareh, 2024. "Integrated degradation-based burn-in and maintenance model for heterogeneous and highly reliable items," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    9. Zheng, Junjun & Okamura, Hiroyuki & Dohi, Tadashi, 2021. "Age replacement with Markovian opportunity process," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. H. W. Block & W. S. Borges & T. H. Savits, 1988. "A general age replacement model with minimal repair," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 365-372, October.
    11. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2013. "Optimal policies for cumulative damage models with maintenance last and first," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 50-59.
    12. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Optimizing availability of heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 137-145.
    13. Cha, Ji Hwan & Finkelstein, Maxim, 2024. "Preventive maintenance for the constrained multi-attempt minimal repair," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Ciriaco Valdez‐Flores & Richard M. Feldman, 1989. "A survey of preventive maintenance models for stochastically deteriorating single‐unit systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(4), pages 419-446, August.
    15. M D Pandey & T Cheng & J A M van der Weide, 2011. "Finite-time maintenance cost analysis of engineering systems affected by stochastic degradation," Journal of Risk and Reliability, , vol. 225(2), pages 241-250, June.
    16. Fu-Min Chang & Yu-Hung Chien, 2012. "Optimal Discrete-Time Periodic Replacement Policy For Repairable Products Under Free Minimal Repair Warranty," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 29(03), pages 1-14.
    17. Doostparast, Mohammad & Kolahan, Farhad & Doostparast, Mahdi, 2014. "A reliability-based approach to optimize preventive maintenance scheduling for coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 98-106.
    18. Abdolsaeed Toomaj & Antonio Di Crescenzo, 2020. "Connections between Weighted Generalized Cumulative Residual Entropy and Variance," Mathematics, MDPI, vol. 8(7), pages 1-27, July.
    19. Eryilmaz, Serkan & Ozkut, Murat, 2020. "Optimization problems for a parallel system with multiple types of dependent components," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    20. Hyunju Lee & Ji Hwan Cha & Maxim Finkelstein, 2022. "A Preventive Replacement Policy for a System Subject to Bivariate Generalized Polya Failure Process," Mathematics, MDPI, vol. 10(11), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:3:p:236-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.