IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v191y2019ics0951832018301492.html
   My bibliography  Save this article

Fatigue reliability assessment of offshore wind turbines with stochastic availability

Author

Listed:
  • Horn, Jan-Tore
  • Leira, Bernt J.

Abstract

In this paper, the impact on lifetime estimation of an offshore wind turbine by introducing a stochastic model for the availability is investigated. Offshore bottom-fixed wind turbines typically have an average downtime of 4–10% due to e.g. grid- or mechanical failures including a potentially long response time for recovery. During the non-operational conditions, the fatigue damage in the foundation is accumulating significantly faster. Designing the wind farm based on a conservative downtime fraction will lead to design conservatism with respect to the foundation, which will be quantified in this paper using a structural reliability analysis.

Suggested Citation

  • Horn, Jan-Tore & Leira, Bernt J., 2019. "Fatigue reliability assessment of offshore wind turbines with stochastic availability," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:reensy:v:191:y:2019:i:c:s0951832018301492
    DOI: 10.1016/j.ress.2019.106550
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018301492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scheu, Matti Niclas & Kolios, Athanasios & Fischer, Tim & Brennan, Feargal, 2017. "Influence of statistical uncertainty of component reliability estimations on offshore wind farm availability," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 28-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2022. "Life-extension classification of offshore wind assets using unsupervised machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2020. "Risk-based maintenance planning of offshore wind turbine farms," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Kan, Cihangir & Devrim, Yilser & Eryilmaz, Serkan, 2020. "On the theoretical distribution of the wind farm power when there is a correlation between wind speed and wind turbine availability," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    4. Hegseth, John Marius & Bachynski, Erin E. & Leira, Bernt J., 2021. "Effect of environmental modelling and inspection strategy on the optimal design of floating wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    6. Liu, Fuxiu & Li, Zhaojun & Liang, Minglang & Zhao, Binjian & Ding, Jiang, 2023. "Prediction method of non-stationary random vibration fatigue reliability of turbine runner blade based on transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Zhang, Ruixing & An, Liqiang & He, Lun & Yang, Xinmeng & Huang, Zenghao, 2024. "Reliability analysis and inverse optimization method for floating wind turbines driven by dual meta-models combining transient-steady responses," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    8. Thapa, Mishal & Missoum, Samy, 2022. "Uncertainty quantification and global sensitivity analysis of composite wind turbine blades," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Shittu, Abdulhakim Adeoye & Mehmanparast, Ali & Hart, Phil & Kolios, Athanasios, 2021. "Comparative study between S-N and fracture mechanics approach on reliability assessment of offshore wind turbine jacket foundations," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Chen, Chao & Duffour, Philippe & Fromme, Paul & Hua, Xugang, 2021. "Numerically efficient fatigue life prediction of offshore wind turbines using aerodynamic decoupling," Renewable Energy, Elsevier, vol. 178(C), pages 1421-1434.
    12. Ramezani, Mahyar & Choe, Do-Eun & Heydarpour, Khashayar & Koo, Bonjun, 2023. "Uncertainty models for the structural design of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    2. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    3. Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.
    4. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    5. Yürüşen, Nurseda Y. & Rowley, Paul N. & Watson, Simon J. & Melero, Julio J., 2020. "Automated wind turbine maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    6. Cevasco, D. & Koukoura, S. & Kolios, A.J., 2021. "Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    7. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    8. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    9. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2023. "A closed-loop maintenance strategy for offshore wind farms: Incorporating dynamic wind farm states and uncertainty-awareness in decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2022. "Life-extension classification of offshore wind assets using unsupervised machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    12. Niemi, Arto & Skobiej, Bartosz & Kulev, Nikolai & Sill Torres, Frank, 2024. "Modeling offshore wind farm disturbances and maintenance service responses within the scope of resilience," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    13. Hans Olav Vogt Myklebust & Jo Eidsvik & Iver Bakken Sperstad & Debarun Bhattacharjya, 2020. "Value of Information Analysis for Complex Simulator Models: Application to Wind Farm Maintenance," Decision Analysis, INFORMS, vol. 17(2), pages 134-153, June.
    14. Santhosh, T.V. & Gopika, V. & Ghosh, A.K. & Fernandes, B.G., 2018. "An approach for reliability prediction of instrumentation & control cables by artificial neural networks and Weibull theory for probabilistic safety assessment of NPPs," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 31-44.
    15. Eryilmaz, Serkan & Bulanık, İrem & Devrim, Yilser, 2021. "Reliability based modeling of hybrid solar/wind power system for long term performance assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    16. Pliego Marugán, Alberto & Peco Chacón, Ana María & García Márquez, Fausto Pedro, 2019. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    17. Soszyńska-Budny Joanna & Chmielewski Mariusz & Pioch Joanna, 2023. "Reliability of Renewable Power Generation using the Example of Offshore Wind Farms," Folia Oeconomica Stetinensia, Sciendo, vol. 23(1), pages 228-245, June.
    18. Neves-Moreira, Fábio & Veldman, Jasper & Teunter, Ruud H., 2021. "Service operation vessels for offshore wind farm maintenance: Optimal stock levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    19. Robert Basmadjian & Amirhossein Shaafieyoun & Sahib Julka, 2021. "Day-Ahead Forecasting of the Percentage of Renewables Based on Time-Series Statistical Methods," Energies, MDPI, vol. 14(21), pages 1-23, November.
    20. Thapa, Mishal & Missoum, Samy, 2022. "Uncertainty quantification and global sensitivity analysis of composite wind turbine blades," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:191:y:2019:i:c:s0951832018301492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.