IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v19y2024ip55-64..html
   My bibliography  Save this article

Bivariate reliability analysis for floating wind turbines

Author

Listed:
  • Oleg Gaidai
  • Vladimir Yakimov
  • Fang Wang
  • Jiayao Sun
  • Kelin Wang

Abstract

Wind turbines are designed to withstand extreme wind- and wave-induced loads, hence a reliability study is vital. This study presents a bivariate reliability approach, suitable for accurate assessment of critical forces and moments, occurring within the wind turbine’s critical mechanical parts, such as the drivetrain. A ecently developed bivariate modified Weibull method has been utilized in this study. Multivariate statistical analysis is more appropriate than a univariate one, as it accounts for cross-correlations between different system components. This study employed a bivariate modified Weibull method to estimate extreme operational loads acting on a 10-mega watt (MW) semi-submersible type floating wind turbine (FWT). Longitudinal, bending, twisting, and cyclic loads being among typical load types that FWTs and associated parts are susceptible to. Furthermore, environmental loads acting on an operating FWT being impacted by incoming wind’s stochastic behavior in terms of wind speed, direction, shear, vorticity, necessitates accurate nonlinear extreme load analysis for FWT critical parts such as the drivetrain. Appropriate numerical methods were used in this study to model dynamic, structural, aerodynamic, and control aspects of the FWT system. Bending moments acting on the FWT drivetrain have been obtained from SIMPACK (Multibody Simulation Method), given realistic in-situ environmental conditions. For a 5-year return period of interest, a bivariate modified Weibull method offered robust assessment of FWT’s coupled drivetrain’s bending moments.

Suggested Citation

  • Oleg Gaidai & Vladimir Yakimov & Fang Wang & Jiayao Sun & Kelin Wang, 2024. "Bivariate reliability analysis for floating wind turbines," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 19, pages 55-64.
  • Handle: RePEc:oup:ijlctc:v:19:y:2024:i::p:55-64.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctad108
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:19:y:2024:i::p:55-64.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.