IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v282y2023ics0378377423001440.html
   My bibliography  Save this article

Assessing the effects of water resources allocation on the uncertainty propagation in the water–energy–food–society (WEFS) nexus

Author

Listed:
  • Zeng, Yujie
  • Liu, Dedi
  • Guo, Shenglian
  • Xiong, Lihua
  • Liu, Pan
  • Chen, Jie
  • Yin, Jiabo
  • Wu, Zhenhui
  • Zhou, Wan

Abstract

The water–energy–food–society (WEFS) nexus is profiled for sustainable development. The WEFS nexus exhibits strong uncertainty owing to the stochasticity of model structure, and water availability uncertainty under climate change and human activities. The WEFS nexus remains highly risky, as the uncertainty propagation in the WEFS nexus under the regulation of water resources allocation has rarely been investigated. In this study, white Gaussian noises were integrated into a system dynamic model for the WEFS nexus simulation, transforming the nexus from deterministic to stochastic. Based on a Monte Carlo simulation of the stochastic WEFS nexus with water availability uncertainty, the copula function was applied to evaluate the joint distributions between water availability and water shortage rates in the upstream and downstream zones to investigate the uncertainty propagation in the WEFS nexus. The effects of water resources allocation on the uncertainty propagation were analyzed by setting different water resources allocation schemes. The proposed approach was applied to the mid–lower reaches of Hanjiang River basin in China as a case study. The results indicate that an effective water resources allocation scheme can ensure water supply, and diminish the impacts of water availability uncertainty on water supply through reservoir operation. The annual average water supply rate increased from 84.74% to 93.45%, and the standard deviation decreased from 3.37% to 1.78%. The high-level environmental awareness evoked by water or food shortages decreased significantly with smaller uncertainty. The co-evolution of the WEFS was ensured through its nexus. Water storage capacity was the vital factor to regulate the uncertainty propagation in the WEFS nexus. The impacts of upstream water availability uncertainty were efficiently regulated via reservoir operation for the zones with sufficient water storage capacity. Water supply was ensured and there was no significant response of the WEFS through its nexus to different water resources allocation schemes. If there was few water storage capacity in a zone, the water supply was remarkably influenced by the water availability uncertainty in the upstream zone. The water supply was difficult to ensure, and was sensitive to different water resources allocation schemes. The environmental awareness evoked by water or food shortages increased. The environmental awareness feedback under the impacts of the noises increased water demand uncertainty by altering the socioeconomic expansion, further increased WEFS uncertainty through its nexus, particularly when water availability was much smaller than water demand. The proposed approach can help quantify the effects of water resources allocation on the uncertainty propagation in the WEFS nexus and contribute to the sustainable development of the WEFS nexus.

Suggested Citation

  • Zeng, Yujie & Liu, Dedi & Guo, Shenglian & Xiong, Lihua & Liu, Pan & Chen, Jie & Yin, Jiabo & Wu, Zhenhui & Zhou, Wan, 2023. "Assessing the effects of water resources allocation on the uncertainty propagation in the water–energy–food–society (WEFS) nexus," Agricultural Water Management, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:agiwat:v:282:y:2023:i:c:s0378377423001440
    DOI: 10.1016/j.agwat.2023.108279
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423001440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bilgen, S., 2014. "Structure and environmental impact of global energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 890-902.
    2. Henry P. Huntington & Jennifer I. Schmidt & Philip A. Loring & Erin Whitney & Srijan Aggarwal & Amanda G. Byrd & Subhabrata Dev & Aaron D. Dotson & Daisy Huang & Barbara Johnson & Justus Karenzi & Hen, 2021. "Applying the food–energy–water nexus concept at the local scale," Nature Sustainability, Nature, vol. 4(8), pages 672-679, August.
    3. Guttal, Vishwesha & Jayaprakash, C., 2007. "Impact of noise on bistable ecological systems," Ecological Modelling, Elsevier, vol. 201(3), pages 420-428.
    4. He, Shaokun & Guo, Shenglian & Yin, Jiabo & Liao, Zhen & Li, He & Liu, Zhangjun, 2022. "A novel impoundment framework for a mega reservoir system in the upper Yangtze River basin," Applied Energy, Elsevier, vol. 305(C).
    5. Zeng, X.T. & Zhang, J.L. & Yu, L. & Zhu, J.X. & Li, Z. & Tang, L., 2019. "A sustainable water-food-energy plan to confront climatic and socioeconomic changes using simulation-optimization approach," Applied Energy, Elsevier, vol. 236(C), pages 743-759.
    6. Dedi Liu & Xiaohong Chen & Zhanghua Lou, 2010. "A Model for the Optimal Allocation of Water Resources in a Saltwater Intrusion Area: A Case Study in Pearl River Delta in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 63-81, January.
    7. Govindan, Rajesh & Al-Ansari, Tareq, 2019. "Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 653-668.
    8. Strzepek, Kenneth M. & Yohe, Gary W. & Tol, Richard S.J. & Rosegrant, Mark W., 2008. "The value of the high Aswan Dam to the Egyptian economy," Ecological Economics, Elsevier, vol. 66(1), pages 117-126, May.
    9. Jiabo Yin & Shenglian Guo & Zhangjun Liu & Guang Yang & Yixuan Zhong & Dedi Liu, 2018. "Uncertainty Analysis of Bivariate Design Flood Estimation and its Impacts on Reservoir Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1795-1809, March.
    10. Tobias Vetter & Julia Reinhardt & Martina Flörke & Ann Griensven & Fred Hattermann & Shaochun Huang & Hagen Koch & Ilias G. Pechlivanidis & Stefan Plötner & Ousmane Seidou & Buda Su & R. Willem Vervoo, 2017. "Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins," Climatic Change, Springer, vol. 141(3), pages 419-433, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Yujie & Liu, Dedi & Guo, Shenglian & Xiong, Lihua & Liu, Pan & Chen, Jie & Chen, Hua & Yin, Jiabo & Wu, Zhenhui & Zhou, Wan, 2024. "Assessment of the impacts of water resources allocation on the reliability, resilience and vulnerability of the water–energy–food–society (WEFS) nexus system," Agricultural Water Management, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhiqin & Zhang, Liangliang & Liu, Dong & Sun, Nan & Li, Mo & Faiz, Muhammad Abrar & Li, Tianxiao & Cui, Song & Khan, Muhammad Imran, 2024. "Measurement and analysis of regional water-energy-food nexus resilience with an improved hybrid kernel extreme learning machine model based on a dung beetle optimization algorithm," Agricultural Systems, Elsevier, vol. 218(C).
    2. Zhang, Tong & Tan, Qian & Yu, Xiaoning & Zhang, Shan, 2020. "Synergy assessment and optimization for water-energy-food nexus: Modeling and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Xie, Yuzuo & Guo, Shenglian & Zhong, Sirui & He, Zhipeng & Liu, Pan & Zhou, Yanlai, 2024. "Optimal allocation of flood prevention storage and dynamic operation of water levels to increase cascade reservoir hydropower generation," Renewable Energy, Elsevier, vol. 228(C).
    4. Shanshan Wen & Buda Su & Yanjun Wang & Jianqing Zhai & Hemin Sun & Ziyan Chen & Jinlong Huang & Anqian Wang & Tong Jiang, 2020. "Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China," Climatic Change, Springer, vol. 163(3), pages 1207-1226, December.
    5. Songsong Liu & Lazaros Papageorgiou & Petros Gikas, 2012. "Integrated Management of Non-conventional Water Resources in Anhydrous Islands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 359-375, January.
    6. Dinar, Ariel, 2012. "Economy-wide implications of direct and indirect policy interventions in the water sector: lessons from recent work and future research needs," Policy Research Working Paper Series 6068, The World Bank.
    7. Shaochun Huang & Harsh Shah & Bibi S. Naz & Narayan Shrestha & Vimal Mishra & Prasad Daggupati & Uttam Ghimire & Tobias Vetter, 2020. "Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins," Climatic Change, Springer, vol. 163(3), pages 1143-1164, December.
    8. Pengcheng Qin & Hongmei Xu & Min Liu & Lüliu Liu & Chan Xiao & Iman Mallakpour & Matin Rahnamay Naeini & Kuolin Hsu & Soroosh Sorooshian, 2022. "Projected impacts of climate change on major dams in the Upper Yangtze River Basin," Climatic Change, Springer, vol. 170(1), pages 1-24, January.
    9. Jew Das & Alin Treesa & N. V. Umamahesh, 2018. "Modelling Impacts of Climate Change on a River Basin: Analysis of Uncertainty Using REA & Possibilistic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4833-4852, December.
    10. Fan Xiao & Zhi-Hua Hu & Ke-Xin Wang & Pei-Hua Fu, 2015. "Spatial Distribution of Energy Consumption and Carbon Emission of Regional Logistics," Sustainability, MDPI, vol. 7(7), pages 1-20, July.
    11. Wei Zheng & Patrick Paul Walsh, 2018. "Urbanization, trade openness, and air pollution: a provincial level analysis of China," Working Papers 201818, Geary Institute, University College Dublin.
    12. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    13. Jing Tian & Dedi Liu & Shenglian Guo & Zhengke Pan & Xingjun Hong, 2019. "Impacts of Inter-Basin Water Transfer Projects on Optimal Water Resources Allocation in the Hanjiang River Basin, China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    14. Sheila M. Olmstead & Hilary Sigman, 2015. "Damming the Commons: An Empirical Analysis of International Cooperation and Conflict in Dam Location," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(4), pages 497-526.
    15. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    17. Zeng, Chunhua & Wang, Hua, 2012. "Noise and large time delay: Accelerated catastrophic regime shifts in ecosystems," Ecological Modelling, Elsevier, vol. 233(C), pages 52-58.
    18. Dedi Liu & Shenglian Guo & Pan Liu & Hui Zou & Xingjun Hong, 2019. "Rational Function Method for Allocating Water Resources in the Coupled Natural-Human Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 57-73, January.
    19. Dejian Yu & Sun Meng, 2018. "An overview of biomass energy research with bibliometric indicators," Energy & Environment, , vol. 29(4), pages 576-590, June.
    20. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:282:y:2023:i:c:s0378377423001440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.