IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics0951832023004696.html
   My bibliography  Save this article

BCMS4W-ST: On the Bi-directional Circular Multi-State System with Spatiotemporal Sliding Window for Sequential Tasks

Author

Listed:
  • Wang, Wei
  • Lin, Mingqiang
  • Si, Peng
  • Wang, Yan
  • Fan, Binning

Abstract

In industrial applications, circular systems possess the natural ability to rotate bi-directionally, which essentially provides redundancy to maintain higher system reliability. This paper proposes a new model of bi-directional circular multi-state system with a spatiotemporal sliding window for sequential tasks (BCMS4W-ST). The system contains n mutually independent multi-state elements (MEs) in a circle and can rotate bi-directionally. The system functionality depends on the ability of r consecutive MEs starting from any ME in either counterclockwise or clockwise directions for completing pre-specified sequential tasks within a limited completion time. A universal generating function technique is employed to describe and evaluate the system reliability. The reliability model is built by considering feasible performance assignment schemes of involved consecutive MEs, and a dynamic programming algorithm is introduced to efficiently determine the assignment scheme with the shortest completion time. Numerical experiments have demonstrated the proposed system model and the suggested algorithm. Finally, the element sequencing optimization for BCMS4W-ST is investigated as a viable way to improve system reliability. The proposed model and method support reliability analysis and improvement of circular multi-state sliding window systems with bi-directional rotation mechanism for completing sequential heterogeneous tasks.

Suggested Citation

  • Wang, Wei & Lin, Mingqiang & Si, Peng & Wang, Yan & Fan, Binning, 2023. "BCMS4W-ST: On the Bi-directional Circular Multi-State System with Spatiotemporal Sliding Window for Sequential Tasks," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004696
    DOI: 10.1016/j.ress.2023.109555
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023004696
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Yanping & Levitin, Gregory, 2012. "Combined m-consecutive and k-out-of-n sliding window systems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 105-113.
    2. Levitin, Gregory, 2005. "Uneven allocation of elements in linear multi-state sliding window system," European Journal of Operational Research, Elsevier, vol. 163(2), pages 418-433, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    2. Wang, Wei & Fu, Yongnian & Si, Peng & Lin, Mingqiang, 2020. "Reliability analysis of circular multi-state sliding window system with sequential demands," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    3. Wang, Wei & Fang, Chao & Wang, Yan & Li, Jin, 2022. "Reliability Modeling and Optimization of Circular Multi-State Sliding Time Window System with Sequential Demands," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Wang, Wei & Fang, Chao & Liu, Shan & Xiang, Yisha, 2021. "Reliability analysis and optimization of multi-state sliding window system with sequential demands and time constraints," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    5. Xiao, Hui & Zhang, Yiyun & Xiang, Yisha & Peng, Rui, 2020. "Optimal design of a linear sliding window system with consideration of performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Lu, Shaoqi & Shi, Daimin & Xiao, Hui, 2019. "Reliability of sliding window systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 366-376.
    7. Xiao, Hui & Shi, Daimin & Ding, Yi & Peng, Rui, 2016. "Optimal loading and protection of multi-state systems considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 88-95.
    8. Juan Yin & Narayanaswamy Balakrishnan & Lirong Cui, 2024. "Efficient reliability computation of consecutive- k -out-of- n : F systems with shared components," Journal of Risk and Reliability, , vol. 238(1), pages 122-135, February.
    9. Fernández, Arturo J., 2015. "Optimum attributes component test plans for k-out-of-n:F Weibull systems using prior information," European Journal of Operational Research, Elsevier, vol. 240(3), pages 688-696.
    10. Nizar Mannai & Soufiane Gasmi, 2020. "Optimal design of k-out-of-n system under first and last replacement in reliability theory," Operational Research, Springer, vol. 20(3), pages 1353-1368, September.
    11. Wu, Shaomin & Coolen, Frank P.A., 2013. "A cost-based importance measure for system components: An extension of the Birnbaum importance," European Journal of Operational Research, Elsevier, vol. 225(1), pages 189-195.
    12. Xiaojun Liang & Yinghui Tang, 2019. "The improvement upon the reliability of the k-out-of-n:F system with the repair rates differentiation policy," Operational Research, Springer, vol. 19(2), pages 479-500, June.
    13. Levitin, Gregory & Xing, Liudong & Yu, Shengji, 2014. "Optimal connecting elements allocation in linear consecutively-connected systems with phased mission and common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 85-94.
    14. Li, Y.F. & Peng, R., 2014. "Availability modeling and optimization of dynamic multi-state series–parallel systems with random reconfiguration," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 47-57.
    15. Hui Xiao & Minhao Cao & Gang Kou & Xiaojun Yuan, 2021. "Optimal element allocation and sequencing of multi-state series systems with two levels of performance sharing," Journal of Risk and Reliability, , vol. 235(2), pages 282-292, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.