IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v225y2022ics0951832022002587.html
   My bibliography  Save this article

Reliability Modeling and Optimization of Circular Multi-State Sliding Time Window System with Sequential Demands

Author

Listed:
  • Wang, Wei
  • Fang, Chao
  • Wang, Yan
  • Li, Jin

Abstract

This paper proposes a new model of circular multi-state sliding time window system with sequential demands (named CMSTWS-SD). This model is an extension of the multi-state sliding window systems with considering temporal window width defined by the required completion time. For the proposed model, the system contains n multi-state elements (MEs) arranged in circular structure, and any ME can be designated as the starting point for completing the pre-specified sequential tasks. The system function depends on its capability of completing the sequential tasks within the required mission time from any possible starting points. The reliability model of the CMSTWS-SD is formulated by investigating the performance assignment schemes of each elements group starting on different MEs and adopting the extended universal generating function (UGF) technique. We suggest an approach of states aggregation to reduce the computational burden caused by the raising number of system states. Furthermore, we develop a dynamic programming algorithm for determining the optimal performance assignment scheme with minimum completion time. Since the sequence of MEs strongly affects the system reliability of considered CMSTWS-SD, we further study the optimal element sequencing problem. Numerical experiments of the system reliability evaluation and the element sequencing optimization are conducted for illustration.

Suggested Citation

  • Wang, Wei & Fang, Chao & Wang, Yan & Li, Jin, 2022. "Reliability Modeling and Optimization of Circular Multi-State Sliding Time Window System with Sequential Demands," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002587
    DOI: 10.1016/j.ress.2022.108616
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022002587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mo, Yuchang & Xing, Liudong & Zhang, Lejun & Cai, Shaobin, 2020. "Performability analysis of multi-state sliding window systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    2. Endharta, Alfonsus Julanto & Yun, Won Young & Ko, Young Myoung, 2018. "Reliability evaluation of circular k-out-of-n: G balanced systems through minimal path sets," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 226-236.
    3. Wang, Wei & Fu, Yongnian & Si, Peng & Lin, Mingqiang, 2020. "Reliability analysis of circular multi-state sliding window system with sequential demands," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Gregory Levitin, 2005. "Reliability of linear multistate multiple sliding window systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(3), pages 212-223, April.
    5. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    6. Levitin, Gregory & Xing, Liudong & Ben-Haim, Hanoch & Huang, Hong-Zong, 2019. "Dynamic demand satisfaction probability of consecutive sliding window systems with warm standby components," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 397-405.
    7. Xiao, Hui & Yi, Kunxiang & Liu, Haitao & Kou, Gang, 2021. "Reliability modeling and optimization of a two-dimensional sliding window system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Xiang, Yanping & Levitin, Gregory, 2012. "Combined m-consecutive and k-out-of-n sliding window systems," European Journal of Operational Research, Elsevier, vol. 219(1), pages 105-113.
    9. Levitin, Gregory, 2005. "Uneven allocation of elements in linear multi-state sliding window system," European Journal of Operational Research, Elsevier, vol. 163(2), pages 418-433, June.
    10. Levitin, Gregory & Ben-Haim, Hanoch, 2011. "Consecutive sliding window systems," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1367-1374.
    11. Lu, Shaoqi & Shi, Daimin & Xiao, Hui, 2019. "Reliability of sliding window systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 366-376.
    12. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, September.
    13. Konak, Abdullah & Kulturel-Konak, Sadan & Levitin, Gregory, 2012. "Multi-objective optimization of linear multi-state multiple sliding window system," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 24-34.
    14. Hui Xiao & Rui Peng & Gregory Levitin, 2016. "Optimal replacement and allocation of multi‐state elements in k‐within‐m‐from‐r/n sliding window systems," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(2), pages 184-198, March.
    15. Xiao, Hui & Zhang, Yiyun & Xiang, Yisha & Peng, Rui, 2020. "Optimal design of a linear sliding window system with consideration of performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    16. Yun, Won-Young & Kim, Gui-Rae & Yamamoto, Hisashi, 2007. "Economic design of a circular consecutive-k-out-of-n:F system with (k-1)-step Markov dependence," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 464-478.
    17. Wang, Wei & Fang, Chao & Liu, Shan & Xiang, Yisha, 2021. "Reliability analysis and optimization of multi-state sliding window system with sequential demands and time constraints," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Weifu & Wang, Yanhui & Hao, Yucheng & He, Zhichao & Yan, Kai & Zhao, Fan, 2024. "Reliability analysis for complex electromechanical multi-state systems utilizing universal generating function techniques," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Fang, Chao & Liu, Shan & Xiang, Yisha, 2021. "Reliability analysis and optimization of multi-state sliding window system with sequential demands and time constraints," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    2. Wang, Wei & Fu, Yongnian & Si, Peng & Lin, Mingqiang, 2020. "Reliability analysis of circular multi-state sliding window system with sequential demands," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    3. Xiao, Hui & Yi, Kunxiang & Liu, Haitao & Kou, Gang, 2021. "Reliability modeling and optimization of a two-dimensional sliding window system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Xiao, Hui & Zhang, Yiyun & Xiang, Yisha & Peng, Rui, 2020. "Optimal design of a linear sliding window system with consideration of performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    5. Mo, Yuchang & Xing, Liudong & Zhang, Lejun & Cai, Shaobin, 2020. "Performability analysis of multi-state sliding window systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    7. Lu, Shaoqi & Shi, Daimin & Xiao, Hui, 2019. "Reliability of sliding window systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 366-376.
    8. Wu, Congshan & Zhao, Xian & Wang, Siqi & Song, Yanbo, 2022. "Reliability analysis of consecutive-k-out-of-r-from-n subsystems: F balanced systems with load sharing," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    9. Wu, Congshan & Pan, Rong & Zhao, Xian & Wang, Xiaoyue, 2024. "Designing preventive maintenance for multi-state systems with performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Ding, Yi & Hu, Yishuang & Li, Daqing, 2021. "Redundancy Optimization for Multi-Performance Multi-State Series-Parallel Systems Considering Reliability Requirements," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Tian, Tianzi & Yang, Jun & Li, Lei & Wang, Ning, 2023. "Reliability assessment of performance-based balanced systems with rebalancing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    12. Bigatti, A.M. & Pascual-Ortigosa, P. & Sáenz-de-Cabezón, E., 2021. "A C++ class for multi-state algebraic reliability computations," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    13. Levitin, Gregory & Xing, Liudong & Ben-Haim, Hanoch & Huang, Hong-Zong, 2019. "Dynamic demand satisfaction probability of consecutive sliding window systems with warm standby components," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 397-405.
    14. Levitin, Gregory & Xing, Liudong & Xiang, Yanping & Dai, Yuanshun, 2021. "Mixed failure-driven and shock-driven mission aborts in heterogeneous systems with arbitrary structure," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    15. Xiao, Hui & Shi, Daimin & Ding, Yi & Peng, Rui, 2016. "Optimal loading and protection of multi-state systems considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 88-95.
    16. Zhao, Xian & Han, He & Jiao, Chunhui & Qiu, Qingan, 2024. "Reliability modeling of k-out-of-n: F balanced systems with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    17. Gu, Liudong & Wang, Guanjun & Zhou, Yifan, 2024. "Optimal allocation of multi-state performance sharing systems with multiple common buses," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    18. Xiao, Hui & Cao, Minhao, 2020. "Balancing the demand and supply of a power grid system via reliability modeling and maintenance optimization," Energy, Elsevier, vol. 210(C).
    19. Konak, Abdullah & Kulturel-Konak, Sadan & Levitin, Gregory, 2012. "Multi-objective optimization of linear multi-state multiple sliding window system," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 24-34.
    20. Wu, Di & Chi, Yuanying & Peng, Rui & Sun, Mengyao, 2019. "Reliability of capacitated systems with performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 335-344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.