IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v216y2021ics0951832021004737.html
   My bibliography  Save this article

Reliability and maintenance models for a time-related multi-state flow network via d-MC approach

Author

Listed:
  • Chang, Ping-Chen
  • Huang, Ding-Hsiang
  • Lin, Yi-Kuei
  • Nguyen, Thi-Phuong

Abstract

This study applied the approach of minimal cuts for demand d (d-MC) to evaluate the time-related reliability of a multi-state flow network (MSFN). The maximal capacity vectors that did not meet the demand rate were generated by a proposed algorithm. The Weibull reliability function was adopted to derive the probability distribution for arc capacity in the MSFN. In terms of the generated d-MCs and derived probability distributions, the MSFN system unreliability was calculated by the recursive sum of the disjoint products. Furthermore, the system reliability was 1 – system unreliability, which is a performance index of an MSFN. Based on the system unreliability, a maintenance model with three strategies was proposed to retain the service level of the MSFN. Experimental results show the performance of the proposed maintenance strategies. The advantages of different maintenance strategies are further discussed for managers to determine an appropriate alternative to maintain MSFN capability.

Suggested Citation

  • Chang, Ping-Chen & Huang, Ding-Hsiang & Lin, Yi-Kuei & Nguyen, Thi-Phuong, 2021. "Reliability and maintenance models for a time-related multi-state flow network via d-MC approach," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021004737
    DOI: 10.1016/j.ress.2021.107962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021004737
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forghani-elahabad, Majid & Kagan, Nelson & Mahdavi-Amiri, Nezam, 2019. "An MP-based approximation algorithm on reliability evaluation of multistate flow networks," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Guanghan Bai & Zhigang Tian & Ming J. Zuo, 2018. "Reliability evaluation of multistate networks: An improved algorithm using state-space decomposition and experimental comparison," IISE Transactions, Taylor & Francis Journals, vol. 50(5), pages 407-418, May.
    3. Cheng-Fu Huang, 2019. "Evaluation of system reliability for a stochastic delivery-flow distribution network with inventory," Annals of Operations Research, Springer, vol. 277(1), pages 33-45, June.
    4. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    5. Yang, Li & Zhao, Yu & Peng, Rui & Ma, Xiaobing, 2018. "Hybrid preventive maintenance of competing failures under random environment," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 130-140.
    6. Ping-Chen Chang, 2019. "Reliability estimation for a stochastic production system with finite buffer storage by a simulation approach," Annals of Operations Research, Springer, vol. 277(1), pages 119-133, June.
    7. Zhao, Xufeng & Al-Khalifa, Khalifa N. & Magid Hamouda, Abdel & Nakagawa, Toshio, 2017. "Age replacement models: A summary with new perspectives and methods," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 95-105.
    8. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.
    9. Zhang, Cai Wen, 2021. "Weibull parameter estimation and reliability analysis with zero-failure data from high-quality products," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    10. Tiam Kapen, Pascalin & Jeutho Gouajio, Marinette & Yemélé, David, 2020. "Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon," Renewable Energy, Elsevier, vol. 159(C), pages 1188-1198.
    11. Yeh, Cheng-Ta, 2019. "An improved NSGA2 to solve a bi-objective optimization problem of multi-state electronic transaction network," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    12. Bai, Guanghan & Zuo, Ming J. & Tian, Zhigang, 2015. "Search for all d-MPs for all d levels in multistate two-terminal networks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 300-309.
    13. Yi-Kuei Lin & Shin-Guang Chen, 2016. "Double resource optimization for a robust computer network subject to a transmission budget," Annals of Operations Research, Springer, vol. 244(1), pages 133-162, September.
    14. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    15. Compare, M. & Baraldi, P. & Bani, I. & Zio, E. & McDonnell, D., 2020. "Industrial equipment reliability estimation: A Bayesian Weibull regression model with covariate selection," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    16. Yeh, Wei-Chang, 2020. "A new method for verifying d-MC candidates," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    17. Niu, Yi-Feng & Wan, Xiao-Yu & Xu, Xiu-Zhen & Ding, Dong, 2020. "Finding all multi-state minimal paths of a multi-state flow network via feasible circulations," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Aghezzaf, E.H. & Jamali, M.A. & Ait-Kadi, D., 2007. "An integrated production and preventive maintenance planning model," European Journal of Operational Research, Elsevier, vol. 181(2), pages 679-685, September.
    19. Ducros, Florence & Pamphile, Patrick, 2018. "Bayesian estimation of Weibull mixture in heavily censored data setting," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 453-462.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Cheng-Hao & Lin, Yi-Kuei, 2024. "Rescue and safety system development and performance evaluation by network reliability," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Chang, Ping-Chen, 2022. "MC-based simulation approach for two-terminal multi-state network reliability evaluation without knowing d-MCs," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    3. Kozyra, Paweł Marcin, 2023. "The usefulness of (d,b)-MCs and (d,b)-MPs in network reliability evaluation under delivery or maintenance cost constraints," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Forghani-elahabad, Majid & Yeh, Wei-Chang, 2022. "An improved algorithm for reliability evaluation of flow networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    5. Davila-Frias, Alex & Yodo, Nita & Le, Trung & Yadav, Om Prakash, 2023. "A deep neural network and Bayesian method based framework for all-terminal network reliability estimation considering degradation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Ping-Chen, 2022. "MC-based simulation approach for two-terminal multi-state network reliability evaluation without knowing d-MCs," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Huang, Cheng-Fu & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2022. "Network reliability evaluation for multi-state computing networks considering demand as the non-integer type," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Yi-Feng Niu & Can He & De-Qiang Fu, 2022. "Reliability assessment of a multi-state distribution network under cost and spoilage considerations," Annals of Operations Research, Springer, vol. 309(1), pages 189-208, February.
    4. Yeh, Cheng-Ta & Lin, Yi-Kuei & Yeng, Louis Cheng-Lu & Huang, Pei-Tzu, 2021. "Reliability evaluation of a multistate railway transportation network from the perspective of a travel agent," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. Niu, Yi-Feng & Song, Yi-Fan & Xu, Xiu-Zhen & Zhao, Xia, 2022. "Efficient reliability computation of a multi-state flow network with cost constraint," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Niu, Yi-Feng, 2021. "Performance measure of a multi-state flow network under reliability and maintenance cost considerations," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Cheng-Fu Huang & Ding-Hsiang Huang & Yi-Kuei Lin, 2022. "System reliability analysis for a cloud-based network under edge server capacity and budget constraints," Annals of Operations Research, Springer, vol. 312(1), pages 217-234, May.
    8. Kozyra, Paweł Marcin, 2023. "The usefulness of (d,b)-MCs and (d,b)-MPs in network reliability evaluation under delivery or maintenance cost constraints," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Yi-Kuei Lin & Lance Fiondella & Ping-Chen Chang, 2022. "Reliability of time-constrained multi-state network susceptible to correlated component faults," Annals of Operations Research, Springer, vol. 311(1), pages 239-254, April.
    10. Ding-Hsiang Huang & Cheng-Fu Huang & Yi-Kuei Lin, 2019. "Reliability Evaluation for a Stochastic Flow Network Based on Upper and Lower Boundary Vectors," Mathematics, MDPI, vol. 7(11), pages 1-12, November.
    11. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Yeh, Wei-Chang, 2020. "A new method for verifying d-MC candidates," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    13. Niu, Yi-Feng & Wan, Xiao-Yu & Xu, Xiu-Zhen & Ding, Dong, 2020. "Finding all multi-state minimal paths of a multi-state flow network via feasible circulations," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    14. Huang, Ding-Hsiang & Huang, Cheng-Fu & Lin, Yi-Kuei, 2020. "A novel minimal cut-based algorithm to find all minimal capacity vectors for multi-state flow networks," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1107-1114.
    15. Ping-Chen Chang, 2022. "Reliability evaluation and big data analytics architecture for a stochastic flow network with time attribute," Annals of Operations Research, Springer, vol. 311(1), pages 3-18, April.
    16. Xu, Xiu-Zhen & Niu, Yi-Feng & Song, Yi-Fan, 2021. "Computing the reliability of a stochastic distribution network subject to budget constraint," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    18. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    19. Lin Wang & Zhiqiang Lu & Yifei Ren, 2019. "A rolling horizon approach for production planning and condition-based maintenance under uncertain demand," Journal of Risk and Reliability, , vol. 233(6), pages 1014-1028, December.
    20. Yeh, Wei-Chang, 2024. "A new hybrid inequality BAT for comprehensive all-level d-MP identification using minimal paths in Multistate Flow Network reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:216:y:2021:i:c:s0951832021004737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.