IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v55y2023i11p1091-1102.html
   My bibliography  Save this article

An efficient algorithm for the reliability evaluation of multistate flow networks under budget constraints

Author

Listed:
  • Paweł Marcin Kozyra

Abstract

Many real-world systems can be modeled by multi-state flow networks (MFNs) and their reliability evaluation features in designing and control of these systems. Considering the cost constraint makes the problem of reliability evaluation of an MFN more realistic. For a given demand value d and a given cost limit c, the reliability of an MFN at level (d, c) is the probability of transmitting at least d units from the source node to the sink node through the network within the cost of c. This article addresses the so-called (d, c)-MC problem, i.e., the problem of reliability evaluation of an MFN with cost constraint in terms of minimal cuts. It presents new results on which a new algorithm is based. This algorithm finds all (d, c)-MC candidates without duplicates and verifies them more efficiently than existing ones. The complexity results for this algorithm and an example of its use are provided. Finally, numerical experiments with R language implementations of the presented algorithm and other competitive algorithms are considered. Both the time complexity analysis and numerical experiments demonstrate the presented algorithm to be more efficient than the fastest competing algorithms in 81.41–85.11% of cases.

Suggested Citation

  • Paweł Marcin Kozyra, 2023. "An efficient algorithm for the reliability evaluation of multistate flow networks under budget constraints," IISE Transactions, Taylor & Francis Journals, vol. 55(11), pages 1091-1102, November.
  • Handle: RePEc:taf:uiiexx:v:55:y:2023:i:11:p:1091-1102
    DOI: 10.1080/24725854.2022.2147607
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2022.2147607
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2022.2147607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Ping-Chen, 2024. "A path-based simulation approach for multistate flow network reliability estimation without using boundary points," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Ping-Chen Chang & Ding-Hsiang Huang & Cheng-Fu Huang, 2024. "Simulation-based system reliability estimation of a multi-state flow network for all possible demand levels," Annals of Operations Research, Springer, vol. 340(1), pages 117-132, September.
    3. Kozyra, Paweł Marcin, 2024. "A parallel algorithm for reliability assessment of multi-state flow networks based on simultaneous finding of all multi-state minimal paths and performing state space decomposition," Reliability Engineering and System Safety, Elsevier, vol. 251(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:55:y:2023:i:11:p:1091-1102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.