IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics0951832024004939.html
   My bibliography  Save this article

Distributed monitoring of nonlinear plant-wide processes based on GA-regularized kernel canonical correlation analysis

Author

Listed:
  • Jin, Wenhao
  • Wang, Wenjing
  • Wang, Yang
  • Cao, Zhixing
  • Jiang, Qingchao

Abstract

Fault detection and diagnosis is important for ensuring process safety and is gaining increasing attention in the system safety field. A regularized kernel canonical correlation analysis (RKCCA) approach is proposed for monitoring nonlinear plantwide processes. For each local unit, genetic algorithm (GA)-based regularization is performed to determine the communication variables from neighboring units, which preserves the maximum correlations and eliminates the irrelevant variables. Then variables from a local unit and the communication variables are mapped into high-dimensional feature spaces, and the feature space of the local unit is decomposed into three orthogonal subspaces, namely the residual subspace, the inner subspace, and the outer-related subspace. Monitoring statistics to identify both the process status and the characteristic of a detected fault are constructed. The proposed RKCCA-based monitoring method considers both the information of a local unit and the beneficial information of related units to facilitate fault detection, thereby exhibiting superior performance to some state-of-the-arts methods. Applications on the Tennessee Eastman benchmark process and an industrial tail gas treatment process demonstrate the superiority of RKCCA monitoring.

Suggested Citation

  • Jin, Wenhao & Wang, Wenjing & Wang, Yang & Cao, Zhixing & Jiang, Qingchao, 2024. "Distributed monitoring of nonlinear plant-wide processes based on GA-regularized kernel canonical correlation analysis," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024004939
    DOI: 10.1016/j.ress.2024.110421
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110421?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lisnianski, Anatoly & Levit, Evgeniy & Teper, Lina, 2021. "Short-term availability and performability analysis for a large-scale multi-state system based on robotic sensors," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    2. Melani, Arthur Henrique de Andrade & Michalski, Miguel Angelo de Carvalho & da Silva, Renan Favarão & de Souza, Gilberto Francisco Martha, 2021. "A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Chen, Zhen & Zhou, Di & Zio, Enrico & Xia, Tangbin & Pan, Ershun, 2023. "Adaptive transfer learning for multimode process monitoring and unsupervised anomaly detection in steam turbines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Soleimani, Morteza & Campean, Felician & Neagu, Daniel, 2021. "Integration of Hidden Markov Modelling and Bayesian Network for fault detection and prediction of complex engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jie & Xu, Yubo & Wang, Lisong, 2022. "Fault information mining with causal network for railway transportation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Sahu, Atma Ram & Palei, Sanjay Kumar, 2022. "Fault analysis of dragline subsystem using Bayesian network model," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    4. Wang, Weicheng & Chen, Jinglong & Zhang, Tianci & Liu, Zijun & Wang, Jun & Zhang, Xinwei & He, Shuilong, 2023. "An asymmetrical graph Siamese network for one-classanomaly detection of engine equipment with multi-source fusion," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Coraça, Eduardo M. & Ferreira, Janito V. & Nóbrega, Eurípedes G.O., 2023. "An unsupervised structural health monitoring framework based on Variational Autoencoders and Hidden Markov Models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Zhang, Jiaxin & Rangaiah, Gade Pandu & Dong, Lichun & Samavedham, Lakshminarayanan, 2025. "An improved industrial fault diagnosis model by integrating enhanced variational mode decomposition with sparse process monitoring method," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    7. Chaleshtori, Amir Eshaghi & Aghaie, Abdollah, 2024. "A novel bearing fault diagnosis approach using the Gaussian mixture model and the weighted principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Bai, Ruxue & Meng, Zong & Xu, Quansheng & Fan, Fengjie, 2023. "Fractional Fourier and time domain recurrence plot fusion combining convolutional neural network for bearing fault diagnosis under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    9. Fang, Xiaoyu & Qu, Jianfeng & Chai, Yi, 2023. "Self-supervised intermittent fault detection for analog circuits guided by prior knowledge," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    10. Li, Jimeng & Cheng, Xing & Peng, Junling & Meng, Zong, 2022. "A new adaptive parallel resonance system based on cascaded feedback model of vibrational resonance and stochastic resonance and its application in fault detection of rolling bearings," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Zhao, Shuaiyu & Duan, Yiling & Roy, Nitin & Zhang, Bin, 2024. "A deep learning methodology based on adaptive multiscale CNN and enhanced highway LSTM for industrial process fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    13. Xu, Yadong & Yan, Xiaoan & Feng, Ke & Sheng, Xin & Sun, Beibei & Liu, Zheng, 2022. "Attention-based multiscale denoising residual convolutional neural networks for fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    15. Tian, Jilun & Jiang, Yuchen & Zhang, Jiusi & Luo, Hao & Yin, Shen, 2024. "A novel data augmentation approach to fault diagnosis with class-imbalance problem," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Zheng, Niannian & Luan, Xiaoli & Shardt, Yuri A.W. & Liu, Fei, 2024. "Dynamic-controlled principal component analysis for fault detection and automatic recovery," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Zhou, Yu & Chen, Yang & Liu, Shenyan & Kou, Gang, 2024. "Availability simulation and transfer prediction for bike sharing systems based on discrete event simulation," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    18. Xu, Yadong & Yan, Xiaoan & Sun, Beibei & Liu, Zheng, 2022. "Dually attentive multiscale networks for health state recognition of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    19. Vaisman, Radislav & Sun, Yuting, 2021. "Reliability and importance measure analysis of networks with shared risk link groups," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    20. Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Deep learning approach for energy efficiency prediction with signal monitoring reliability for a vinyl chloride monomer process," Reliability Engineering and System Safety, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024004939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.