IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v182y2019icp219-232.html
   My bibliography  Save this article

Stakeholder mapping and disruption scenarios with application to resilience of a container port

Author

Listed:
  • Almutairi, Ayedh
  • Collier, Zachary A.
  • Hendrickson, Daniel
  • Palma-Oliveira, José M.
  • Polmateer, Thomas L.
  • Lambert, James H.

Abstract

Port infrastructure and port operations are highly impacted by disruptive scenarios that stem from several different types of causes, including adverse weather events, economic crises, traffic congestion, and spikes in demand, among others. Port intermodal transportation systems are characterized by high complexity and uncertainty since they serve and impact multiple groups of stakeholders, including exporters, importers, operators, organizations, port workers, port authorities, residents, and others. The influences of the disruptive scenarios combined with the influences of possible conflicting interests among groups of stakeholders make significant impacts to port operations and planning programs. The innovation of this study is that it integrates two existing approaches to resilience analytics addressing the influences of scenarios and stakeholders to priorities: a stakeholder classification approach called stakeholder mapping, and an approach known as scenario-based preferences modeling. The framework that is developed in this paper finds the joint influences of disruptive scenarios and groups of stakeholders to disrupt the importance ranking of initiatives. The results emphasize that the most disruptive scenario to the multiple groups of stakeholders is s1, Traffic Congestion, the least disruptive scenario is s3, High Operation Cost, and the most robust and highly prioritized initiative is x18, Constructing the CIMT marine terminal.

Suggested Citation

  • Almutairi, Ayedh & Collier, Zachary A. & Hendrickson, Daniel & Palma-Oliveira, José M. & Polmateer, Thomas L. & Lambert, James H., 2019. "Stakeholder mapping and disruption scenarios with application to resilience of a container port," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 219-232.
  • Handle: RePEc:eee:reensy:v:182:y:2019:i:c:p:219-232
    DOI: 10.1016/j.ress.2018.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017311602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haowen You & Elizabeth B. Connelly & James H. Lambert & Andres F. Clarens, 2014. "Climate and other scenarios disrupt priorities in several management perspectives," Environment Systems and Decisions, Springer, vol. 34(4), pages 540-554, December.
    2. de Langen, Peter W., 2006. "Chapter 20 Stakeholders, Conflicting Interests and Governance in Port Clusters," Research in Transportation Economics, Elsevier, vol. 17(1), pages 457-477, January.
    3. Heimir Thorisson & James H. Lambert & John J. Cardenas & Igor Linkov, 2017. "Resilience Analytics with Application to Power Grid of a Developing Region," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1268-1286, July.
    4. Yang, Yi-Chih & Chen, Shu-Ling, 2016. "Determinants of global logistics hub ports: Comparison of the port development policies of Taiwan, Korea, and Japan," Transport Policy, Elsevier, vol. 45(C), pages 179-189.
    5. Jordi Gallego-Ayala & Dinis Juízo, 2014. "Integrating Stakeholders’ Preferences into Water Resources Management Planning in the Incomati River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 527-540, January.
    6. Michael Dooms & Cathy Macharis, 2003. "A framework for sustainable port planning in inland ports: a multistakeholder approach," ERSA conference papers ersa03p201, European Regional Science Association.
    7. Yacov Y. Haimes, 2009. "On the Definition of Resilience in Systems," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 498-501, April.
    8. Cairns, George & Goodwin, Paul & Wright, George, 2016. "A decision-analysis-based framework for analysing stakeholder behaviour in scenario planning," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1050-1062.
    9. Marashi, Emad & Davis, John P., 2006. "An argumentation-based method for managing complex issues in design of infrastructural systems," Reliability Engineering and System Safety, Elsevier, vol. 91(12), pages 1535-1545.
    10. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    11. Zachary A. Collier & Elizabeth B. Connelly & Thomas L. Polmateer & James H. Lambert, 2017. "Value chain for next-generation biofuels: resilience and sustainability of the product life cycle," Environment Systems and Decisions, Springer, vol. 37(1), pages 22-33, March.
    12. Yacov Y. Haimes, 2009. "On the Complex Definition of Risk: A Systems‐Based Approach," Risk Analysis, John Wiley & Sons, vol. 29(12), pages 1647-1654, December.
    13. Berle, Øyvind & Asbjørnslett, Bjørn Egil & Rice, James B., 2011. "Formal Vulnerability Assessment of a maritime transportation system," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 696-705.
    14. Teng, Kuei-Yung & Thekdi, Shital A. & Lambert, James H., 2012. "Identification and evaluation of priorities in the business process of a risk or safety organization," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 74-86.
    15. Yacov Y. Haimes, 2012. "Systems‐Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1451-1467, September.
    16. Pomeroy, Robert & Douvere, Fanny, 2008. "The engagement of stakeholders in the marine spatial planning process," Marine Policy, Elsevier, vol. 32(5), pages 816-822, September.
    17. Hamilton, Michelle C. & Lambert, James H. & Connelly, Elizabeth B. & Barker, Kash, 2016. "Resilience analytics with disruption of preferences and lifecycle cost analysis for energy microgrids," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 11-21.
    18. Martinez, Lauro J. & Lambert, James H. & Karvetski, Christopher W., 2011. "Scenario-informed multiple criteria analysis for prioritizing investments in electricity capacity expansion," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 883-891.
    19. Rosso, M. & Bottero, M. & Pomarico, S. & La Ferlita, S. & Comino, E., 2014. "Integrating multicriteria evaluation and stakeholders analysis for assessing hydropower projects," Energy Policy, Elsevier, vol. 67(C), pages 870-881.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucio, D. & Lara, J.L. & Tomás, A. & Losada, I.J., 2024. "Probabilistic assessment of climate-related impacts and risks in ports," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Dui, Hongyan & Zheng, Xiaoqian & Wu, Shaomin, 2021. "Resilience analysis of maritime transportation systems based on importance measures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    3. Hassler, Madison L. & Andrews, Daniel J. & Ezell, Barry C. & Polmateer, Thomas L. & Lambert, James H., 2020. "Multi-perspective scenario-based preferences in enterprise risk analysis of public safety wireless broadband network," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Panahi, Roozbeh & Ng, Adolf K.Y. & Pang, Jiayi, 2020. "Climate change adaptation in the port industry: A complex of lingering research gaps and uncertainties," Transport Policy, Elsevier, vol. 95(C), pages 10-29.
    5. HOSSAIN, Niamat Ullah Ibne & Amrani, Safae El & Jaradat, Raed & Marufuzzaman, Mohammad & Buchanan, Randy & Rinaudo, Christina & Hamilton, Michael, 2020. "Modeling and assessing interdependencies between critical infrastructures using Bayesian network: A case study of inland waterway port and surrounding supply chain network," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Park, Jaehun & Lee, Byung Kwon, 2020. "Liner-dedicated manageability estimation for port operational reliability," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    7. Wang, Yudi & Xiang, Pengcheng, 2024. "Evolutionary game and system dynamics for analysis on stakeholder strategies of regional high-speed rail project in investment decision stage," Technology in Society, Elsevier, vol. 77(C).
    8. Wang, Nanxi & Wu, Min & Yuen, Kum Fai, 2023. "Assessment of port resilience using Bayesian network: A study of strategies to enhance readiness and response capacities," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Al-Mutairi, Ayedh & AlKheder, Sharaf & Alzwayid, Shaikhah & Talib, Dalal & Heji, Mariam Bn & Lambert, James H., 2022. "Scenario-based preferences modeling to investigate port initiatives resilience," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    10. Wang, Feng & Tian, Jin & Shi, Chenli & Ling, Jiamu & Chen, Zian & Xu, Zhengguo, 2024. "A multi-stage quantitative resilience analysis and optimization framework considering dynamic decisions for urban infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Zhen, Lu & Lin, Shumin & Zhou, Chenhao, 2022. "Green port oriented resilience improvement for traffic-power coupled networks," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Li, Shan & Haralambides, Hercules & Zeng, Qingcheng, 2022. "Economic forces shaping the evolution of integrated port systems - The case of the container port system of China's Pearl River Delta," Research in Transportation Economics, Elsevier, vol. 94(C).
    13. Li, Junjun & Yu, Anqi & Xu, Bowei, 2022. "Risk propagation and evolution analysis of multi-level handlings at automated terminals based on double-layer dynamic network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    14. Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
    15. Alamoush, Anas S. & Ballini, Fabio & Ölçer, Aykut I., 2024. "Management of stakeholders engaged in port energy transition," Energy Policy, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayedh Almutairi & John P. Wheeler & David L. Slutzky & James H. Lambert, 2019. "Integrating Stakeholder Mapping and Risk Scenarios to Improve Resilience of Cyber‐Physical‐Social Networks," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2093-2112, September.
    2. Al-Mutairi, Ayedh & AlKheder, Sharaf & Alzwayid, Shaikhah & Talib, Dalal & Heji, Mariam Bn & Lambert, James H., 2022. "Scenario-based preferences modeling to investigate port initiatives resilience," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    3. Hassler, Madison L. & Andrews, Daniel J. & Ezell, Barry C. & Polmateer, Thomas L. & Lambert, James H., 2020. "Multi-perspective scenario-based preferences in enterprise risk analysis of public safety wireless broadband network," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Corinne Curt & Jean‐Marc Tacnet, 2018. "Resilience of Critical Infrastructures: Review and Analysis of Current Approaches," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2441-2458, November.
    5. Shital A. Thekdi & Joost Santos, 2019. "Decision‐Making Analytics Using Plural Resilience Parameters for Adaptive Management of Complex Systems," Risk Analysis, John Wiley & Sons, vol. 39(4), pages 871-889, April.
    6. Ha, Min-Ho & Yang, Zaili & Lam, Jasmine Siu Lee, 2019. "Port performance in container transport logistics: A multi-stakeholder perspective," Transport Policy, Elsevier, vol. 73(C), pages 25-40.
    7. Wang, Tai-Ran & Pedroni, Nicola & Zio, Enrico, 2016. "Identification of protective actions to reduce the vulnerability of safety-critical systems to malevolent acts: A sensitivity-based decision-making approach," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 9-18.
    8. T. R. Wang & N. Pedroni & E. Zio & V. Mousseau, 2020. "Identification of Protective Actions to Reduce the Vulnerability of Safety‐Critical Systems to Malevolent Intentional Acts: An Optimization‐Based Decision‐Making Approach," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 565-587, March.
    9. Heimir Thorisson & James H. Lambert & John J. Cardenas & Igor Linkov, 2017. "Resilience Analytics with Application to Power Grid of a Developing Region," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1268-1286, July.
    10. Hamilton, Michelle C. & Lambert, James H. & Connelly, Elizabeth B. & Barker, Kash, 2016. "Resilience analytics with disruption of preferences and lifecycle cost analysis for energy microgrids," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 11-21.
    11. Zhen, Lu & Lin, Shumin & Zhou, Chenhao, 2022. "Green port oriented resilience improvement for traffic-power coupled networks," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Vrishali Subramanian & Elena Semenzin & Danail Hristozov & Esther Zondervan-van den Beuken & Igor Linkov & Antonio Marcomini, 2015. "Review of decision analytic tools for sustainable nanotechnology," Environment Systems and Decisions, Springer, vol. 35(1), pages 29-41, March.
    13. Elizabeth B. Connelly & Lisa M. Colosi & Andres F. Clarens & James H. Lambert, 2015. "Risk Analysis of Biofuels Industry for Aviation with Scenario‐Based Expert Elicitation," Systems Engineering, John Wiley & Sons, vol. 18(2), pages 178-191, March.
    14. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    15. Cheng-Hsien Hsieh, 2014. "Disaster risk assessment of ports based on the perspective of vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 851-864, November.
    16. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    17. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    18. Xueni Gou & Jasmine Siu Lee Lam, 2019. "Risk analysis of marine cargoes and major port disruptions," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(4), pages 497-523, December.
    19. Behzad Behdani & Bart Wiegmans & Violeta Roso & Hercules Haralambides, 2020. "Port-hinterland transport and logistics: emerging trends and frontier research," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(1), pages 1-25, March.
    20. Aven, Terje & Renn, Ortwin, 2018. "Improving government policy on risk: Eight key principles," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 230-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:182:y:2019:i:c:p:219-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.