IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v234y2023ics0951832023001163.html
   My bibliography  Save this article

Dynamic post-earthquake updating of regional damage estimates using Gaussian Processes

Author

Listed:
  • Bodenmann, Lukas
  • Reuland, Yves
  • Stojadinović, Božidar

Abstract

The widespread earthquake damage to the built environment induces severe short- and long-term societal consequences. Better community resilience may be achieved through well-organized recovery. Decisions to organize the recovery process are taken under intense time pressure using limited, and potentially inaccurate, data on the severity and the spatial distribution of building damage. We propose to use Gaussian Process inference models to fuse the available inspection data with a pre-existing earthquake risk model to dynamically update regional post-earthquake damage estimates and thereby support a well-organized recovery. The proposed method consistently aggregates the gradually incoming building damage inspection data to reduce the uncertainty in ground shaking intensity geographic distribution and to update regional building damage estimates. The performance of the proposed Gaussian Process methodology is demonstrated on one fictitious earthquake scenario and two real earthquake damage datasets. A comparison with purely data-driven methods shows that the proposed method reduces the number of building inspections required to provide reliable and precise damage predictions.

Suggested Citation

  • Bodenmann, Lukas & Reuland, Yves & Stojadinović, Božidar, 2023. "Dynamic post-earthquake updating of regional damage estimates using Gaussian Processes," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023001163
    DOI: 10.1016/j.ress.2023.109201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023001163
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    2. Blagojević, Nikola & Didier, Max & Stojadinović, Božidar, 2022. "Quantifying component importance for disaster resilience of communities with interdependent civil infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. DeJesus Segarra, Jonathan & Bensi, Michelle & Modarres, Mohammad, 2021. "A Bayesian Network Approach for Modeling Dependent Seismic Failures in a Nuclear Power Plant Probabilistic Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    4. Sheibani, Mohamadreza & Ou, Ge, 2021. "Adaptive local kernels formulation of mutual information with application to active post-seismic building damage inference," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Gehl, Pierre & Cavalieri, Francesco & Franchin, Paolo, 2018. "Approximate Bayesian network formulation for the rapid loss assessment of real-world infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 80-93.
    6. Samia Amin & Markus Goldstein, 2008. "Data Against Natural Disasters : Establishing Effective Systems for Relief, Recovery, and Reconstruction," World Bank Publications - Books, The World Bank Group, number 6511.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yinhu & Cheraghi, Amirhossein & Ou, Ge & Marković, Nikola, 2024. "Post-earthquake building damage assessment: A multi-period inspection routing approach for Gaussian process regression," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    2. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    3. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    4. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    5. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    7. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.
    8. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    9. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    10. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    11. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    12. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    13. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    14. Rafael Frongillo, 2022. "Quantum Information Elicitation," Papers 2203.07469, arXiv.org.
    15. Karimi, Majid & Zaerpour, Nima, 2022. "Put your money where your forecast is: Supply chain collaborative forecasting with cost-function-based prediction markets," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1035-1049.
    16. Peysakhovich, Alexander & Plagborg-Møller, Mikkel, 2012. "A note on proper scoring rules and risk aversion," Economics Letters, Elsevier, vol. 117(1), pages 357-361.
    17. Ranadeep Daw & Christopher K. Wikle, 2023. "REDS: Random ensemble deep spatial prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    18. Merkle, Edgar C. & Steyvers, Mark & Mellers, Barbara & Tetlock, Philip E., 2017. "A neglected dimension of good forecasting judgment: The questions we choose also matter," International Journal of Forecasting, Elsevier, vol. 33(4), pages 817-832.
    19. Remy Elbez & Jeff Folz & Alan McLean & Hernan Roca & Joseph M Labuz & Kenneth J Pienta & Shuichi Takayama & Raoul Kopelman, 2021. "Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
    20. repec:bny:wpaper:0088 is not listed on IDEAS
    21. Yuanchao Emily Bo & David V. Budescu & Charles Lewis & Philip E. Tetlock & Barbara Mellers, 2017. "An IRT forecasting model: linking proper scoring rules to item response theory," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 12(2), pages 90-103, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023001163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.