IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v191y2019ics0951832018306471.html
   My bibliography  Save this article

Evaluating component importance and reliability of power transmission networks subject to windstorms: methodology and application to the nordic grid

Author

Listed:
  • Scherb, Anke
  • Garrè, Luca
  • Straub, Daniel

Abstract

We present a procedure for the efficient assessment of component importance and network reliability in power transmission grids subject to wind hazards. A stochastic wind load model is learned from windstorm data. Component fragility models are established by combining information on the design wind loads prescribed by the relevant structural codes and the observed failure rate in the network as a whole. Network performance is assessed by a DC power flow model, which accounts for cascading failures and potential islanding due to load redistribution after initial failure events caused by the windstorms. Besides evaluating the network reliability, selected importance measures are defined to rank single components according to their influence on the overall system reliability. We thereby distinguish component importance related to initial failures triggered by the windstorms and component importance related to potential subsequent cascading failures. The procedure is demonstrated by application to the Nordic Grid model of the electrical power transmission network in Denmark, Norway, Sweden, and Finland. We find that the procedure can provide an efficient basis for planning network improvements in terms of (1) strengthening vulnerable line segments against wind loads and (2) increasing line capacities to limit cascading failures.

Suggested Citation

  • Scherb, Anke & Garrè, Luca & Straub, Daniel, 2019. "Evaluating component importance and reliability of power transmission networks subject to windstorms: methodology and application to the nordic grid," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:reensy:v:191:y:2019:i:c:s0951832018306471
    DOI: 10.1016/j.ress.2019.106517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018306471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zio, Enrico & Piccinelli, Roberta, 2010. "Randomized flow model and centrality measure for electrical power transmission network analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 379-385.
    2. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2017. "AC power flow importance measures considering multi-element failures," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 89-97.
    3. Winkler, James & Dueñas-Osorio, Leonardo & Stein, Robert & Subramanian, Devika, 2010. "Performance assessment of topologically diverse power systems subjected to hurricane events," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 323-336.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jasiūnas, Justinas & Heikkinen, Tatu & Lund, Peter D. & Láng-Ritter, Ilona, 2023. "Resilience of electric grid to extreme wind: Considering local details at national scale," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Bi, Wenzhe & Tian, Li & Li, Chao & Ma, Zhen & Pan, Haiyang, 2023. "Wind-induced failure analysis of a transmission tower-line system with long-term measured data and orientation effect," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Niu, Yi-Feng & Wan, Xiao-Yu & Xu, Xiu-Zhen & Ding, Dong, 2020. "Finding all multi-state minimal paths of a multi-state flow network via feasible circulations," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Gonçalves, Ana & Marques, Margarida Correia & Loureiro, Sílvia & Nieto, Raquel & Liberato, Margarida L.R., 2023. "Disruption risk analysis of the overhead power lines in Portugal," Energy, Elsevier, vol. 263(PA).
    5. Hongyan Dui & Xiaoqian Zheng & Jianjun Guo & Hui Xiao, 2022. "Importance measure-based resilience analysis of a wind power generation system," Journal of Risk and Reliability, , vol. 236(3), pages 395-405, June.
    6. Shen, Zhonghui & Wei, Kai, 2021. "Stochastic model of tropical cyclones along China coast including the effects of spatial heterogeneity and ocean feedback," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Firouzi, Mohsen & Samimi, Abouzar & Salami, Abolfazl, 2022. "Reliability evaluation of a composite power system in the presence of renewable generations," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Ferrario, E. & Poulos, A. & Castro, S. & de la Llera, J.C. & Lorca, A., 2022. "Predictive capacity of topological measures in evaluating seismic risk and resilience of electric power networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Niu, Yi-Feng, 2021. "Performance measure of a multi-state flow network under reliability and maintenance cost considerations," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Dong, Zhengcheng & Tian, Meng & Li, Xin & Lai, Jingang & Tang, Ruoli, 2022. "Mitigating cascading failures of spatially embedded cyber–physical power systems by adding additional information links," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Hui, Hengyu & Bao, Minglei & Ding, Yi & Yan, Jinyue & Song, Yonghua, 2023. "Probabilistic integrated flexible regions of multi-energy industrial parks: Conceptualization and characterization," Applied Energy, Elsevier, vol. 349(C).
    12. Dikshit, Saransh & Alipour, Alice, 2023. "A moment-matching method for fragility analysis of transmission towers under straight line winds," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.
    2. Ma, Liyang & Christou, Vasileios & Bocchini, Paolo, 2022. "Framework for probabilistic simulation of power transmission network performance under hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    5. Shen, Lijuan & Cassottana, Beatrice & Tang, Loon Ching, 2018. "Statistical trend tests for resilience of power systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 138-147.
    6. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Claudio M. Rocco & Kash Barker & Jose Moronta, 2022. "Determining the best algorithm to detect community structures in networks: application to power systems," Environment Systems and Decisions, Springer, vol. 42(2), pages 251-264, June.
    10. Lyu, Dong & Si, Shubin, 2021. "Importance measure for K-out-of-n: G systems under dynamic random load considering strength degradation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Ceferino, Luis & Lin, Ning & Xi, Dazhi, 2023. "Bayesian updating of solar panel fragility curves and implications of higher panel strength for solar generation resilience," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    12. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    13. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    14. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    15. Yifan Yang & S. Thomas Ng & Frank J. Xu & Martin Skitmore & Shenghua Zhou, 2019. "Towards Resilient Civil Infrastructure Asset Management: An Information Elicitation and Analytical Framework," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    16. Seth Guikema, 2020. "Artificial Intelligence for Natural Hazards Risk Analysis: Potential, Challenges, and Research Needs," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1117-1123, June.
    17. Seung‐Ryong Han & David Rosowsky & Seth Guikema, 2014. "Integrating Models and Data to Estimate the Structural Reliability of Utility Poles During Hurricanes," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1079-1094, June.
    18. Ryan, Paraic C. & Stewart, Mark G. & Spencer, Nathan & Li, Yue, 2014. "Reliability assessment of power pole infrastructure incorporating deterioration and network maintenance," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 261-273.
    19. Zhou, Dongyue & Hu, Funian & Wang, Shuliang & Chen, Jun, 2021. "Power network robustness analysis based on electrical engineering and complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    20. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:191:y:2019:i:c:s0951832018306471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.