IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v232y2023ics0951832022006597.html
   My bibliography  Save this article

A value of prediction model to estimate optimal response time to threats for accident prevention

Author

Listed:
  • Zhu, Tiantian
  • Haugen, Stein
  • Liu, Yiliu
  • Yang, Xue

Abstract

This paper presents a novel value of (imperfect) prediction (VoP) model to estimate optimal response time to a threat that may result in an accident. The proposed VoP model is based on information value theory and considers both prediction accuracy and action failure probability over time. The optimal response time is dependent on parameters: the ratio between the accident cost and response action cost, accident probability, action failure probability, prediction performance, and response strategy (a series of sequential responses or a single response). A case study of iceberg management is presented to demonstrate the proposed approach; a sensitivity study is done to evaluate how optimal response time changes with those parameters. The case study show that it is reasonable to respond as early as possible if the threat can lead to a serious accident, while the response can be postponed when the potential consequence is moderate. In addition, the proposed VoP model is proven able to calculate accuracy requirements, thresholds for tolerating risk and acting precautionarily, and maximum investment in accident prevention. Imperfect prediction can lower risk acceptance threshold and higher the threshold of being precautionary; and it is reasonable to increase action cost.

Suggested Citation

  • Zhu, Tiantian & Haugen, Stein & Liu, Yiliu & Yang, Xue, 2023. "A value of prediction model to estimate optimal response time to threats for accident prevention," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:reensy:v:232:y:2023:i:c:s0951832022006597
    DOI: 10.1016/j.ress.2022.109044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022006597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.109044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Drew Fudenberg & Philipp Strack & Tomasz Strzalecki, 2018. "Speed, Accuracy, and the Optimal Timing of Choices," American Economic Review, American Economic Association, vol. 108(12), pages 3651-3684, December.
    2. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    3. Emanuele Borgonovo, 2017. "Value of Information," International Series in Operations Research & Management Science, in: Sensitivity Analysis, chapter 0, pages 93-100, Springer.
    4. Per Sandin & Martin Peterson & Sven Ove Hansson & Christina Rudén & André Juthe, 2002. "Five charges against the precautionary principle," Journal of Risk Research, Taylor & Francis Journals, vol. 5(4), pages 287-299, October.
    5. Hogenboom, Sandra & Parhizkar, Tarannom & Vinnem, Jan Erik, 2021. "Temporal decision-making factors in risk analyses of dynamic positioning operations," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Jörg Breitung & Malte Knüppel, 2021. "How far can we forecast? Statistical tests of the predictive content," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(4), pages 369-392, June.
    7. Bjørnsen, Kjartan & Selvik, Jon Tømmerås & Aven, Terje, 2019. "A semi-quantitative assessment process for improved use of the expected value of information measure in safety management," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 494-502.
    8. Song, Chaolin & Zhang, Chi & Shafieezadeh, Abdollah & Xiao, Rucheng, 2022. "Value of information analysis in non-stationary stochastic decision environments: A reliability-assisted POMDP approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Zou, Guang & Faber, Michael Havbro & González, Arturo & Banisoleiman, Kian, 2021. "Computing the value of information from periodic testing in holistic decision making under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    10. Yuan, Xian-Xun & Higo, Eishiro & Pandey, Mahesh D., 2021. "Estimation of the value of an inspection and maintenance program: A Bayesian gamma process model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Cremen, Gemma & Bozzoni, Francesca & Pistorio, Silvia & Galasso, Carmine, 2022. "Developing a risk-informed decision-support system for earthquake early warning at a critical seaport," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    12. Emanuele Borgonovo & Alessandra Cillo, 2017. "Deciding with Thresholds: Importance Measures and Value of Information," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1828-1848, October.
    13. Straub, Daniel & Ehre, Max & Papaioannou, Iason, 2022. "Decision-theoretic reliability sensitivity," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    14. Gong, Yu & Liu, Pan & Zhang, Jun & Liu, Dedi & Zhang, Xiaoqi & Zhang, Xiaojing, 2020. "Considering different streamflow forecast horizons in the quantitative flood risk analysis for a multi-reservoir system," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    15. Chadha, Mayank & Ramancha, Mukesh K. & Vega, Manuel A. & Conte, Joel P. & Todd, Michael D., 2023. "The modeling of risk perception in the use of structural health monitoring information for optimal maintenance decisions," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Hao & Yang, Ming & Wang, Haiqing, 2024. "An integrated approach to quantitative resilience assessment in process systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Zuo, Fei & Zio, Enrico & Xu, Yue, 2023. "Bi-objective optimization of the scheduling of risk-related resources for risk response," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Straub, Daniel & Ehre, Max & Papaioannou, Iason, 2022. "Decision-theoretic reliability sensitivity," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Kapoor, Medha & Christensen, Christian Overgaard & Schmidt, Jacob Wittrup & Sørensen, John Dalsgaard & Thöns, Sebastian, 2023. "Decision analytic approach for the reclassification of concrete bridges by using elastic limit information from proof loading," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    4. Michael Felix Pacevicius & Marilia Ramos & Davide Roverso & Christian Thun Eriksen & Nicola Paltrinieri, 2022. "Managing Heterogeneous Datasets for Dynamic Risk Analysis of Large-Scale Infrastructures," Energies, MDPI, vol. 15(9), pages 1-40, April.
    5. Zhu, Xiaoyan & Chen, Zhiqiang & Borgonovo, Emanuele, 2021. "Remaining-useful-lifetime and system-remaining-profit based importance measures for decisions on preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Song, Chaolin & Zhang, Chi & Shafieezadeh, Abdollah & Xiao, Rucheng, 2022. "Value of information analysis in non-stationary stochastic decision environments: A reliability-assisted POMDP approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Emanuele Borgonovo & Alessandra Cillo & Curtis L. Smith, 2018. "On the Relationship between Safety and Decision Significance," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1541-1558, August.
    8. Zhang, Wei-Heng & Qin, Jianjun & Lu, Da-Gang & Liu, Min & Faber, Michael H., 2023. "Quantification of the value of condition monitoring system with time-varying monitoring performance in the context of risk-based inspection," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Xianzhen Huang & Frank PA Coolen, 2018. "Reliability sensitivity analysis of coherent systems based on survival signature," Journal of Risk and Reliability, , vol. 232(6), pages 627-634, December.
    10. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    11. Zou, Guang & Faber, Michael Havbro & González, Arturo & Banisoleiman, Kian, 2021. "Computing the value of information from periodic testing in holistic decision making under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    12. Fissler, Tobias & Pesenti, Silvana M., 2023. "Sensitivity measures based on scoring functions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1408-1423.
    13. Karun Adusumilli, 2022. "How to sample and when to stop sampling: The generalized Wald problem and minimax policies," Papers 2210.15841, arXiv.org, revised Feb 2024.
    14. Philippe Jehiel & Jakub Steiner, 2020. "Selective Sampling with Information-Storage Constraints [On interim rationality, belief formation and learning in decision problems with bounded memory]," The Economic Journal, Royal Economic Society, vol. 130(630), pages 1753-1781.
    15. Jacquemet, N. & Luchini, S. & Malézieux, A. & Shogren, J.F., 2020. "Who’ll stop lying under oath? Empirical evidence from tax evasion games," European Economic Review, Elsevier, vol. 124(C).
    16. Mira Frick & Ryota Iijima & Tomasz Strzalecki, 2019. "Dynamic Random Utility," Econometrica, Econometric Society, vol. 87(6), pages 1941-2002, November.
    17. Strittmatter, Anthony & Sunde, Uwe & Zegners, Dainis, 2022. "Speed, Quality, and the Optimal Timing of Complex Decisions: Field Evidence," Rationality and Competition Discussion Paper Series 317, CRC TRR 190 Rationality and Competition.
    18. Th'eo Durandard & Matteo Camboni, 2024. "Comparative Statics for Optimal Stopping Problems in Nonstationary Environments," Papers 2402.06999, arXiv.org, revised Jul 2024.
    19. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Tobias Fissler & Silvana M. Pesenti, 2022. "Sensitivity Measures Based on Scoring Functions," Papers 2203.00460, arXiv.org, revised Jul 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:232:y:2023:i:c:s0951832022006597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.