IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v207y2021ics0951832020308383.html
   My bibliography  Save this article

Temporal decision-making factors in risk analyses of dynamic positioning operations

Author

Listed:
  • Hogenboom, Sandra
  • Parhizkar, Tarannom
  • Vinnem, Jan Erik

Abstract

Nearly all dynamic positioning (DP) operations are characterized by limited time available for the DP operator to detect and act upon a loss of position. Collision risk is analyzed with a quantitative risk analysis, which usually does not analyze the human contribution to the risk picture, but rather uses estimates. The objective of this paper is to evaluate the way time (e.g. available time, time required, perceived time available and perceived time required) is addressed in risk analyses for oil and gas DP operations and how this affects safety. The study has found that time required can exceed the time available, and that the effects of perceived time available and perceived time required need to be included in human reliability analysis. In general, awareness needs to be raised around the importance of time. This can be done by including the different aspects of time into risk analyses of DP operations so that effective risk reducing measures can be identified. Furthermore, decision support tools should be developed that integrate the dynamics of the vessel movement over time (time available) and the response time of the operator and system (time required) to address not only what, and how of decision-making, but also when.

Suggested Citation

  • Hogenboom, Sandra & Parhizkar, Tarannom & Vinnem, Jan Erik, 2021. "Temporal decision-making factors in risk analyses of dynamic positioning operations," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:reensy:v:207:y:2021:i:c:s0951832020308383
    DOI: 10.1016/j.ress.2020.107347
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020308383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1076-1101.
    2. Chen, Haibo & Moan, Torgeir & Verhoeven, Harry, 2008. "Safety of dynamic positioning operations on mobile offshore drilling units," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 1072-1090.
    3. Parhizkar, Tarannom & Hogenboom, Sandra & Vinnem, Jan Erik & Utne, Ingrid Bouwer, 2020. "Data driven approach to risk management and decision support for dynamic positioning systems," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    4. Hogenboom, Sandra & Rokseth, Børge & Vinnem, Jan Erik & Utne, Ingrid Bouwer, 2020. "Human reliability and the impact of control function allocation in the design of dynamic positioning systems," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    5. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1041-1060.
    6. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 2: IDAC performance influencing factors model," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1014-1040.
    7. Sotiralis, P. & Ventikos, N.P. & Hamann, R. & Golyshev, P. & Teixeira, A.P., 2016. "Incorporation of human factors into ship collision risk models focusing on human centred design aspects," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 210-227.
    8. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 4: IDAC causal model of operator problem-solving response," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1061-1075.
    9. Utne, I.B. & Hokstad, P. & Vatn, J., 2011. "A method for risk modeling of interdependencies in critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 671-678.
    10. Chang, Y.H.J. & Mosleh, A., 2007. "Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 997-1013.
    11. Martins, Marcelo Ramos & Maturana, Marcos Coelho, 2013. "Application of Bayesian Belief networks to the human reliability analysis of an oil tanker operation focusing on collision accidents," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 89-109.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nejad, Hamed S. & Parhizkar, Tarannom & Mosleh, Ali, 2022. "Automatic generation of event sequence diagrams for guiding simulation based dynamic probabilistic risk assessment (SIMPRA) of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Zhu, Tiantian & Haugen, Stein & Liu, Yiliu & Yang, Xue, 2023. "A value of prediction model to estimate optimal response time to threats for accident prevention," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Hu, Yunwei & Parhizkar, Tarannom & Mosleh, Ali, 2022. "Guided simulation for dynamic probabilistic risk assessment of complex systems: Concept, method, and application," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Cheng, Tingting & Veitch, Erik A. & Utne, Ingrid Bouwer & Ramos, Marilia A. & Mosleh, Ali & Alsos, Ole Andreas & Wu, Bing, 2024. "Analysis of human errors in human-autonomy collaboration in autonomous ships operations through shore control experimental data," Reliability Engineering and System Safety, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parhizkar, Tarannom & Utne, Ingrid Bouwer & Vinnem, Jan Erik & Mosleh, Ali, 2021. "Supervised dynamic probabilistic risk assessment of complex systems, part 2: Application to risk-informed decision making, practice and results," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    2. Li, Jue & Li, Heng & Wang, Fan & Cheng, Andy S.K. & Yang, Xincong & Wang, Hongwei, 2021. "Proactive analysis of construction equipment operators’ hazard perception error based on cognitive modeling and a dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    3. Bandeira, Michelle Carvalho Galvão Silva Pinto & Correia, Anderson Ribeiro & Martins, Marcelo Ramos, 2018. "General model analysis of aeronautical accidents involving human and organizational factors," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 137-146.
    4. Parhizkar, Tarannom & Vinnem, Jan Erik & Utne, Ingrid Bouwer & Mosleh, Ali, 2021. "Supervised Dynamic Probabilistic Risk Assessment of Complex Systems, Part 1: General Overview," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    5. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    6. Vaurio, Jussi K., 2009. "Human factors, human reliability and risk assessment in license renewal of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1818-1826.
    7. Jung, Wondea & Park, Jinkyun & Kim, Yochan & Choi, Sun Yeong & Kim, Seunghwan, 2020. "HuREX – A framework of HRA data collection from simulators in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    8. París, C. & Queral, C. & Mula, J. & Gómez-Magán, J. & Sánchez-Perea, M. & Meléndez, E. & Gil, J., 2019. "Quantitative risk reduction by means of recovery strategies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 13-32.
    9. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zhang, Li & Liu, Xueyang & Ding, Qianqiao & Qin, Zhuomin & ÄŒepin, Marko, 2021. "Analysis of dependencies among performance shaping factors in human reliability analysis based on a system dynamics approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Wang, Lijing & Wang, Yanlong & Chen, Yingchun & Pan, Xing & Zhang, Wenjin & Zhu, Yanzhi, 2020. "Methodology for assessing dependencies between factors influencing airline pilot performance reliability: A case of taxiing tasks," Journal of Air Transport Management, Elsevier, vol. 89(C).
    11. Di Pasquale, Valentina & Miranda, Salvatore & Iannone, Raffaele & Riemma, Stefano, 2015. "A Simulator for Human Error Probability Analysis (SHERPA)," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 17-32.
    12. Groth, Katrina M. & Smith, Reuel & Moradi, Ramin, 2019. "A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Maturana, Marcos Coelho & Martins, Marcelo Ramos & Frutuoso e Melo, Paulo Fernando Ferreira, 2021. "Application of a quantitative human performance model to the operational procedure design of a fuel storage pool cooling system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Lee, Hyun-Chul & Seong, Poong-Hyun, 2009. "A computational model for evaluating the effects of attention, memory, and mental models on situation assessment of nuclear power plant operators," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1796-1805.
    15. Aminu Darda’u Rafindadi & Nasir Shafiq & Idris Othman & Miljan Mikić, 2023. "Mechanism Models of the Conventional and Advanced Methods of Construction Safety Training. Is the Traditional Method of Safety Training Sufficient?," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    16. Al-Douri, Ahmad & Levine, Camille S. & Groth, Katrina M., 2023. "Identifying human failure events (HFEs) for external hazard probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Zhao, Yunfei & Smidts, Carol, 2021. "CMS-BN: A cognitive modeling and simulation environment for human performance assessment, part 1 — methodology," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    18. Bolbot, Victor & Theotokatos, Gerasimos & Bujorianu, Luminita Manuela & Boulougouris, Evangelos & Vassalos, Dracos, 2019. "Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 179-193.
    19. Shirley, Rachel Benish & Smidts, Carol & Zhao, Yunfei, 2020. "Development of a quantitative Bayesian network mapping objective factors to subjective performance shaping factor evaluations: An example using student operators in a digital nuclear power plant simul," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    20. Abreu, Danilo T.M.P. & Maturana, Marcos C. & Droguett, Enrique Lopez & Martins, Marcelo R., 2022. "Human reliability analysis of conventional maritime pilotage operations supported by a prospective model," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:207:y:2021:i:c:s0951832020308383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.