IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v218y2022ipas0951832021005421.html
   My bibliography  Save this article

Developing a risk-informed decision-support system for earthquake early warning at a critical seaport

Author

Listed:
  • Cremen, Gemma
  • Bozzoni, Francesca
  • Pistorio, Silvia
  • Galasso, Carmine

Abstract

Earthquake early warning (EEW) systems are used to provide timely alerts on ongoing earthquakes, which can facilitate important risk-mitigation actions before potentially damaging seismic waves reach target sites. A major shortcoming of existing EEW approaches is that the earthquake-related conditions for activating alerts are not generally defined according to a formal decision-support system (DSS) that accounts for possible risk-based consequences of triggering/not triggering the alarm. This paper exploits a next-generation risk-informed EEW DSS, which incorporates multi-criteria decision-making for evaluating the optimal decision. The proposed DSS integrates engineering-driven loss predictions associated with issuing/not issuing an EEW alert during an event, also considering possible system malfunctions. The DSS is demonstrated for the strategic Gioia Tauro seaport, located in a region with some of the highest seismic hazard in Italy. Real-time seismic risk analyses are conducted for various earthquake scenarios, accounting for event-parameter uncertainties that are integral to any EEW process and considering the multicomponent nature of the port as a system of interconnected elements. The results of these analyses are used as input to the proposed EEW DSS along with end-user risk preferences, to evaluate the optimal decision in each case and to define a series of risk-informed EEW warning thresholds for the port.

Suggested Citation

  • Cremen, Gemma & Bozzoni, Francesca & Pistorio, Silvia & Galasso, Carmine, 2022. "Developing a risk-informed decision-support system for earthquake early warning at a critical seaport," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
  • Handle: RePEc:eee:reensy:v:218:y:2022:i:pa:s0951832021005421
    DOI: 10.1016/j.ress.2021.108035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021005421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shafieezadeh, Abdollah & Ivey Burden, Lindsay, 2014. "Scenario-based resilience assessment framework for critical infrastructure systems: Case study for seismic resilience of seaports," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 207-219.
    2. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Pitilakis, Kyriazis & Argyroudis, Sotiris & Fotopoulou, Stavroula & Karafagka, Stella & Kakderi, Kalliopi & Selva, Jacopo, 2019. "Application of stress test concepts for port infrastructures against natural hazards. The case of Thessaloniki port in Greece," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 240-257.
    4. Cao, Xinhu & Lam, Jasmine Siu Lee, 2018. "Simulation-based catastrophe-induced port loss estimation," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 1-12.
    5. HOSSAIN, Niamat Ullah Ibne & Amrani, Safae El & Jaradat, Raed & Marufuzzaman, Mohammad & Buchanan, Randy & Rinaudo, Christina & Hamilton, Michael, 2020. "Modeling and assessing interdependencies between critical infrastructures using Bayesian network: A case study of inland waterway port and surrounding supply chain network," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Jia, Xiaohui & Zhang, Donghui, 2021. "Prediction of maritime logistics service risks applying soft set based association rule: An early warning model," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Zarghami, Seyed Ashkan & Dumrak, Jantanee, 2021. "Unearthing vulnerability of supply provision in logistics networks to the black swan events: Applications of entropy theory and network analysis," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Tiantian & Haugen, Stein & Liu, Yiliu & Yang, Xue, 2023. "A value of prediction model to estimate optimal response time to threats for accident prevention," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Feng, Xinhang & Jiang, Yanli & Gai, Wenmei, 2024. "Rural community response to accidental toxic gas release: An individual emergency response model during self-organized evacuations," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dui, Hongyan & Zheng, Xiaoqian & Wu, Shaomin, 2021. "Resilience analysis of maritime transportation systems based on importance measures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    2. Zhen, Lu & Lin, Shumin & Zhou, Chenhao, 2022. "Green port oriented resilience improvement for traffic-power coupled networks," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Wang, Nanxi & Wu, Min & Yuen, Kum Fai, 2023. "Assessment of port resilience using Bayesian network: A study of strategies to enhance readiness and response capacities," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. HOSSAIN, Niamat Ullah Ibne & Amrani, Safae El & Jaradat, Raed & Marufuzzaman, Mohammad & Buchanan, Randy & Rinaudo, Christina & Hamilton, Michael, 2020. "Modeling and assessing interdependencies between critical infrastructures using Bayesian network: A case study of inland waterway port and surrounding supply chain network," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    5. Sakib, Nazmus & Ibne Hossain, Niamat Ullah & Nur, Farjana & Talluri, Srinivas & Jaradat, Raed & Lawrence, Jeanne Marie, 2021. "An assessment of probabilistic disaster in the oil and gas supply chain leveraging Bayesian belief network," International Journal of Production Economics, Elsevier, vol. 235(C).
    6. Nocera, Fabrizio & Contento, Alessandro & Gardoni, Paolo, 2024. "Risk analysis of supply chains: The role of supporting structures and infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Georges Irankunda & Wei Zhang & Muhirwa Fernand & Jianrong Zhang, 2024. "Assessing the Resilience of Critical Infrastructure Facilities toward a Holistic and Theoretical Approach: A Multi-Scenario Evidence and Case Study," Sustainability, MDPI, vol. 16(20), pages 1-19, October.
    8. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    9. Goerlandt, Floris & Islam, Samsul, 2021. "A Bayesian Network risk model for estimating coastal maritime transportation delays following an earthquake in British Columbia," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    10. Shen, Lijuan & Cassottana, Beatrice & Tang, Loon Ching, 2018. "Statistical trend tests for resilience of power systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 138-147.
    11. Yingyi Huang & Yuliya Mamatok & Chun Jin, 2021. "Decision-making instruments for container seaport sustainable development: management platform and system dynamics model," Environment Systems and Decisions, Springer, vol. 41(2), pages 212-226, June.
    12. T. Sivageerthi & Bathrinath Sankaranarayanan & Syed Mithun Ali & Ali AlArjani & Koppiahraj Karuppiah, 2022. "Modeling Challenges for Improving the Heat Rate Performance in a Thermal Power Plant: Implications for SDGs in Energy Supply Chains," Sustainability, MDPI, vol. 14(8), pages 1-19, April.
    13. Asier Baquero, 2022. "Net Promoter Score (NPS) and Customer Satisfaction: Relationship and Efficient Management," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    14. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Haritha, P.C. & Anjaneyulu, M.V.L.R., 2024. "Comparison of topological functionality-based resilience metrics using link criticality," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Gu, Bingmei & Liu, Jiaguo & Ye, Xiaoheng & Gong, Yu & Chen, Jihong, 2024. "Data-driven approach for port resilience evaluation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    17. Junhong Hu & Mingshu Yang & Yunzhu Zhen, 2024. "A Review of Resilience Assessment and Recovery Strategies of Urban Rail Transit Networks," Sustainability, MDPI, vol. 16(15), pages 1-16, July.
    18. Jiachen Sun & Haiyan Wang & Zhimin Cui, 2023. "Alleviating the Bauxite Maritime Supply Chain Risks through Resilient Strategies: QFD-MCDM with Intuitionistic Fuzzy Decision Approach," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    19. Ilalokhoin, Ohis & Pant, Raghav & Hall, Jim W., 2023. "A model and methodology for resilience assessment of interdependent rail networks – Case study of Great Britain's rail network," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. Pitilakis, Kyriazis & Argyroudis, Sotiris & Fotopoulou, Stavroula & Karafagka, Stella & Kakderi, Kalliopi & Selva, Jacopo, 2019. "Application of stress test concepts for port infrastructures against natural hazards. The case of Thessaloniki port in Greece," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 240-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:218:y:2022:i:pa:s0951832021005421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.