Improved Initialization of the EM Algorithm for Mixture Model Parameter Estimation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Franko, Mitja & Nagode, Marko, 2015. "Probability density function of the equivalent stress amplitude using statistical transformation," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 118-125.
- McLachlan, Geoffrey J. & Krishnan, Thriyambakam & Ng, See Ket, 2004. "The EM Algorithm," Papers 2004,24, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Senthil Kumar Jagatheesaperumal & Varun Prakash Rajamohan & Abdul Khader Jilani Saudagar & Abdullah AlTameem & Muhammad Sajjad & Khan Muhammad, 2023. "MoMo: Mouse-Based Motion Planning for Optimized Grasping to Declutter Objects Using a Mobile Robotic Manipulator," Mathematics, MDPI, vol. 11(20), pages 1-25, October.
- Yingkui Jiao & Zhiwei Li & Junchao Zhu & Bin Xue & Baofeng Zhang, 2022. "ABIDE: A Novel Scheme for Ultrasonic Echo Estimation by Combining CEEMD-SSWT Method with EM Algorithm," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
- Nagode, Marko & Oman, Simon & Klemenc, Jernej & Panić, Branislav, 2023. "Gumbel mixture modelling for multiple failure data," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Branislav Panić & Marko Nagode & Jernej Klemenc & Simon Oman, 2022. "On Methods for Merging Mixture Model Components Suitable for Unsupervised Image Segmentation Tasks," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
- Ben Wu & Subhadip Pal & Jian Kang & Ying Guo, 2022. "Rejoinder to discussions of “distributional independent component analysis for diverse neuroimaging modalities”," Biometrics, The International Biometric Society, vol. 78(3), pages 1122-1126, September.
- Yinan Li & Kai-Tai Fang & Ping He & Heng Peng, 2022. "Representative Points from a Mixture of Two Normal Distributions," Mathematics, MDPI, vol. 10(21), pages 1-28, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Żyromski, Andrzej & Szulczewski, Wiesław & Biniak-Pieróg, Małgorzata & Jakubowski, Wojciech, 2016. "The estimation of basket willow (Salix viminalis) yield – New approach. Part I: Background and statistical description," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1118-1126.
- Ke-Hai Yuan & Kentaro Hayashi, 2005. "On muthén’s maximum likelihood for two-level covariance structure models," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 147-167, March.
- Ringle, Christian M., 2006. "Segmentation for path models and unobserved heterogeneity: The finite mixture partial least squares approach," MPRA Paper 10734, University Library of Munich, Germany.
- Saeedeh Eskandari & Mahdis Amiri & Nitheshnirmal Sãdhasivam & Hamid Reza Pourghasemi, 2020. "Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 305-327, October.
- Qunqiang Feng & Hosam Mahmoud & Alois Panholzer, 2008. "Limit laws for the Randić index of random binary tree models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 319-343, June.
- Jakubowski, Wojciech & Szulczewski, Wiesław & Żyromski, Andrzej & Biniak-Pieróg, Małgorzata, 2016. "The estimation of basket willow (Salix viminalis) yield – New approach, Part II: Theoretical model and its practical application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 843-851.
- James C. Spall, 2012. "Cyclic Seesaw Process for Optimization and Identification," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 187-208, July.
- Nagode, Marko & Oman, Simon & Klemenc, Jernej & Panić, Branislav, 2023. "Gumbel mixture modelling for multiple failure data," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Ke-Hai Yuan & Peter Bentler, 2004. "On the asymptotic distributions of two statistics for two-level covariance structure models within the class of elliptical distributions," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 437-457, September.
- Christophe Genolini & Bruno Falissard, 2010. "KmL: k-means for longitudinal data," Computational Statistics, Springer, vol. 25(2), pages 317-328, June.
- Guillaume Horny, 2009.
"Inference in mixed proportional hazard models with K random effects,"
Statistical Papers, Springer, vol. 50(3), pages 481-499, June.
- Guillaume Horny., 2009. "Inference in Mixed Proportional Hazard Models with K Random Effects," Working papers 248, Banque de France.
- Orozco-Garcia, Carolina & Schmeiser, Hato, 2015. "How sensitive is the pricing of lookback and interest rate guarantees when changing the modelling assumptions?," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 77-93.
- Feinerer, Ingo & Hornik, Kurt & Meyer, David, 2008. "Text Mining Infrastructure in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i05).
- Fordellone, Mario & Vichi, Maurizio, 2020. "Finding groups in structural equation modeling through the partial least squares algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
More about this item
Keywords
mixture model; parameter estimation; EM algorithm; REBMIX algorithm; density estimation; clustering; image segmentation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:3:p:373-:d:329636. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.