Determination of extreme wind values using the Gumbel distribution
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2015.03.126
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dinler, Ali, 2013. "A new low-correlation MCP (measure-correlate-predict) method for wind energy forecasting," Energy, Elsevier, vol. 63(C), pages 152-160.
- Weekes, S.M. & Tomlin, A.S., 2014. "Comparison between the bivariate Weibull probability approach and linear regression for assessment of the long-term wind energy resource using MCP," Renewable Energy, Elsevier, vol. 68(C), pages 529-539.
- Lee, Bong-Hee & Ahn, Dong-Joon & Kim, Hyun-Goo & Ha, Young-Cheol, 2012. "An estimation of the extreme wind speed using the Korea wind map," Renewable Energy, Elsevier, vol. 42(C), pages 4-10.
- Carta, José A. & Velázquez, Sergio, 2011. "A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion site," Energy, Elsevier, vol. 36(5), pages 2671-2685.
- Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
- Velázquez, Sergio & Carta, José A. & Matías, J.M., 2011. "Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: A case study in the Canary Islands," Applied Energy, Elsevier, vol. 88(11), pages 3869-3881.
- Ko, Kyungnam & Kim, Kyoungbo & Huh, Jongchul, 2010. "Variations of wind speed in time on Jeju Island, Korea," Energy, Elsevier, vol. 35(8), pages 3381-3387.
- Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
- Oh, Ki-Yong & Kim, Ji-Young & Lee, Jae-Kyung & Ryu, Moo-Sung & Lee, Jun-Shin, 2012. "An assessment of wind energy potential at the demonstration offshore wind farm in Korea," Energy, Elsevier, vol. 46(1), pages 555-563.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Saravanan Bhaskaran & Amrit Shankar Verma & Andrew J. Goupee & Subhamoy Bhattacharya & Amir R. Nejad & Wei Shi, 2023. "Comparison of Extreme Wind and Waves Using Different Statistical Methods in 40 Offshore Wind Energy Lease Areas Worldwide," Energies, MDPI, vol. 16(19), pages 1-26, October.
- Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2020. "Evaluation of Wind Energy Potential Using an Optimum Approach based on Maximum Distance Metric," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
- Nagode, Marko & Oman, Simon & Klemenc, Jernej & Panić, Branislav, 2023. "Gumbel mixture modelling for multiple failure data," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Fu, Xueqian & Li, Gengyin & Wang, Huaizhi, 2018. "Use of a second-order reliability method to estimate the failure probability of an integrated energy system," Energy, Elsevier, vol. 161(C), pages 425-434.
- Fu, Xueqian & Li, Gengyin & Zhang, Xiurong & Qiao, Zheng, 2018. "Failure probability estimation of the gas supply using a data-driven model in an integrated energy system," Applied Energy, Elsevier, vol. 232(C), pages 704-714.
- Héctor J. Gómez & Karol I. Santoro & Diego Ayma & Isaac E. Cortés & Diego I. Gallardo & Tiago M. Magalhães, 2024. "A New Generalization of the Truncated Gumbel Distribution with Quantile Regression and Applications," Mathematics, MDPI, vol. 12(11), pages 1-20, June.
- A. Asgharzadeh & Hassan S. Bakouch & M. Habibi, 2017. "A generalized binomial exponential 2 distribution: modeling and applications to hydrologic events," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2368-2387, October.
- Gunnell, Yanni & Mietton, Michel & Touré, Amadou Abdourhamane & Fujiki, Kenji, 2023. "Potential for wind farming in West Africa from an analysis of daily peak wind speeds and a review of low-level jet dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Mazzeo, Domenico & Oliveti, Giuseppe & Labonia, Ester, 2018. "Estimation of wind speed probability density function using a mixture of two truncated normal distributions," Renewable Energy, Elsevier, vol. 115(C), pages 1260-1280.
- Kresning, Boma & Hashemi, M. Reza & Shirvani, Amin & Hashemi, Javad, 2024. "Uncertainty of extreme wind and wave loads for marine renewable energy farms in hurricane-prone regions," Renewable Energy, Elsevier, vol. 220(C).
- Elio Chiodo & Bassel Diban & Giovanni Mazzanti & Fabio De Angelis, 2023. "A Review on Wind Speed Extreme Values Modeling and Bayes Estimation for Wind Power Plant Design and Construction," Energies, MDPI, vol. 16(14), pages 1-20, July.
- Christopher Jung & Dirk Schindler & Alexander Buchholz & Jessica Laible, 2017. "Global Gust Climate Evaluation and Its Influence on Wind Turbines," Energies, MDPI, vol. 10(10), pages 1-18, September.
- Gerald A. Abantao & Jessa A. Ibañez & Paul Eugene Delfin C. Bundoc & Lean Lorenzo F. Blas & Xaviery N. Penisa & Eugene A. Esparcia & Michael T. Castro & Roger Victor E. Buendia & Karl Ezra S. Pilario , 2024. "Reconceptualizing Reliability Indices as Metrics to Quantify Power Distribution System Resilience," Energies, MDPI, vol. 17(8), pages 1-13, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- José V. P. Miguel & Eliane A. Fadigas & Ildo L. Sauer, 2019. "The Influence of the Wind Measurement Campaign Duration on a Measure-Correlate-Predict (MCP)-Based Wind Resource Assessment," Energies, MDPI, vol. 12(19), pages 1-15, September.
- Dinler, Ali, 2013. "A new low-correlation MCP (measure-correlate-predict) method for wind energy forecasting," Energy, Elsevier, vol. 63(C), pages 152-160.
- Kim, Ji-Young & Oh, Ki-Yong & Kim, Min-Suek & Kim, Kwang-Yul, 2019. "Evaluation and characterization of offshore wind resources with long-term met mast data corrected by wind lidar," Renewable Energy, Elsevier, vol. 144(C), pages 41-55.
- Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Cheng, Shih-Ping & Sun, Li-Chung & Kuo, Shye-Chorng, 2014. "Comparative analysis on power curve models of wind turbine generator in estimating capacity factor," Energy, Elsevier, vol. 73(C), pages 88-95.
- Sajid Ali & Choon-Man Jang, 2019. "Selection of Best-Suited Wind Turbines for New Wind Farm Sites Using Techno-Economic and GIS Analysis in South Korea," Energies, MDPI, vol. 12(16), pages 1-22, August.
- Oh, Ki-Yong & Kim, Ji-Young & Lee, Jae-Kyung & Ryu, Moo-Sung & Lee, Jun-Shin, 2012. "An assessment of wind energy potential at the demonstration offshore wind farm in Korea," Energy, Elsevier, vol. 46(1), pages 555-563.
- Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
- Xiao Liu & Xu Lai & Jin Zou, 2017. "A New MCP Method of Wind Speed Temporal Interpolation and Extrapolation Considering Wind Speed Mixed Uncertainty," Energies, MDPI, vol. 10(8), pages 1-21, August.
- Dongbum Kang & Kyungnam Ko & Jongchul Huh, 2018. "Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Korea," Energies, MDPI, vol. 11(2), pages 1-19, February.
- Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Opportunities and Challenges of Solar and Wind Energy in South Korea: A Review," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
- Weekes, S.M. & Tomlin, A.S. & Vosper, S.B. & Skea, A.K. & Gallani, M.L. & Standen, J.J., 2015. "Long-term wind resource assessment for small and medium-scale turbines using operational forecast data and measure–correlate–predict," Renewable Energy, Elsevier, vol. 81(C), pages 760-769.
- El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
- Oluseyi O. Ajayi & Richard O. Fagbenle & James Katende & Julius M. Ndambuki & David O. Omole & Adekunle A. Badejo, 2014. "Wind Energy Study and Energy Cost of Wind Electricity Generation in Nigeria: Past and Recent Results and a Case Study for South West Nigeria," Energies, MDPI, vol. 7(12), pages 1-27, December.
- Arslan, Talha & Bulut, Y. Murat & Altın Yavuz, Arzu, 2014. "Comparative study of numerical methods for determining Weibull parameters for wind energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 820-825.
- Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
- Mifsud, Michael D. & Sant, Tonio & Farrugia, Robert N., 2018. "A comparison of Measure-Correlate-Predict Methodologies using LiDAR as a candidate site measurement device for the Mediterranean Island of Malta," Renewable Energy, Elsevier, vol. 127(C), pages 947-959.
- Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
- Hdidouan, Daniel & Staffell, Iain, 2017. "The impact of climate change on the levelised cost of wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 575-592.
- Altunkaynak, Abdüsselam & Erdik, Tarkan & Dabanlı, İsmail & Şen, Zekai, 2012. "Theoretical derivation of wind power probability distribution function and applications," Applied Energy, Elsevier, vol. 92(C), pages 809-814.
More about this item
Keywords
Wind data; Extreme wind speed; Gumbel distribution; MCP (Measure-Correlate-Predict); Gringorten plotting position formula;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:86:y:2015:i:c:p:51-58. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.