IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v226y2022ics0951832022003131.html
   My bibliography  Save this article

EL-NAHL: Exploring labels autoencoding in augmented hidden layers of feedforward neural networks for cybersecurity in smart grids

Author

Listed:
  • Berghout, Tarek
  • Benbouzid, Mohamed

Abstract

Reliability and security of power distribution and data traffic in smart grid (SG) are very important for industrial control systems (ICS). Indeed, SG cyber-physical connectivity is subject to several vulnerabilities that can damage or disrupt its process immunity via cyberthreats. Today's ICSs are experiencing highly complex data change and dynamism, increasing the complexity of detecting and mitigating cyberattacks. Subsequently, and since Machine Learning (ML) is widely studied in cybersecurity, the objectives of this paper are twofold. First, for algorithmic simplicity, a small-scale ML algorithm that attempts to reduce computational costs is proposed. The algorithm adopts a neural network with an augmented hidden layer (NAHL) to easily and efficiently accomplish the learning procedures. Second, to solve the data complexity problem regarding rapid change and dynamism, a label autoencoding approach is introduced for Embedding Labels in the NAHL (EL-NAHL) architecture to take advantage of labels propagation when separating data scatters. Furthermore, to provide a more realistic analysis by addressing real-world threat scenarios, a dataset of an electric traction substation used in the high-speed rail industry is adopted in this work. Compared to some existing algorithms and other previous works, the achieved results show that the proposed EL-NAHL architecture is effective even under massive dynamically changed and imbalanced data.

Suggested Citation

  • Berghout, Tarek & Benbouzid, Mohamed, 2022. "EL-NAHL: Exploring labels autoencoding in augmented hidden layers of feedforward neural networks for cybersecurity in smart grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003131
    DOI: 10.1016/j.ress.2022.108680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022003131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Zhetong & Chen, Chunyu & Cui, Mingjian & Bi, Wenjun & Chen, Yang & Li, Fangxing, 2021. "Dynamic game-based defensive primary frequency control system considering intelligent attackers," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Miller, Thomas & Staves, Alexander & Maesschalck, Sam & Sturdee, Miriam & Green, Benjamin, 2021. "Looking back to look forward: Lessons learnt from cyber-attacks on Industrial Control Systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    3. Shahid Tufail & Imtiaz Parvez & Shanzeh Batool & Arif Sarwat, 2021. "A Survey on Cybersecurity Challenges, Detection, and Mitigation Techniques for the Smart Grid," Energies, MDPI, vol. 14(18), pages 1-22, September.
    4. Zhao, Yunfei & Huang, Linan & Smidts, Carol & Zhu, Quanyan, 2020. "Finite-horizon semi-Markov game for time-sensitive attack response and probabilistic risk assessment in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Mina Farmanbar & Kiyan Parham & Øystein Arild & Chunming Rong, 2019. "A Widespread Review of Smart Grids Towards Smart Cities," Energies, MDPI, vol. 12(23), pages 1-18, November.
    6. Zio, Enrico & Aven, Terje, 2011. "Uncertainties in smart grids behavior and modeling: What are the risks and vulnerabilities? How to analyze them?," Energy Policy, Elsevier, vol. 39(10), pages 6308-6320, October.
    7. Tarek Berghout & Mohamed Benbouzid & Leïla-Hayet Mouss, 2021. "Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction," Energies, MDPI, vol. 14(8), pages 1-18, April.
    8. IAIANI, Matteo & TUGNOLI, Alessandro & BONVICINI, Sarah & COZZANI, Valerio, 2021. "Analysis of Cybersecurity-related Incidents in the Process Industry," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    9. Wang, Wei & Cova, Gregorio & Zio, Enrico, 2022. "A clustering-based framework for searching vulnerabilities in the operation dynamics of Cyber-Physical Energy Systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    10. Wu, Shimeng & Jiang, Yuchen & Luo, Hao & Zhang, Jiusi & Yin, Shen & Kaynak, Okyay, 2022. "An integrated data-driven scheme for the defense of typical cyber–physical attacks," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    11. Ding, Weiyong & Xu, Maochao & Huang, Yu & Zhao, Peng & Song, Fengyi, 2021. "Cyber attacks on PMU placement in a smart grid: Characterization and optimization," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tarek Berghout & Toufik Bentrcia & Mohamed Amine Ferrag & Mohamed Benbouzid, 2022. "A Heterogeneous Federated Transfer Learning Approach with Extreme Aggregation and Speed," Mathematics, MDPI, vol. 10(19), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diao, Xiaoxu & Zhao, Yunfei & Smidts, Carol & Vaddi, Pavan Kumar & Li, Ruixuan & Lei, Hangtian & Chakhchoukh, Yacine & Johnson, Brian & Blanc, Katya Le, 2024. "Dynamic probabilistic risk assessment for electric grid cybersecurity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Badrsimaei, Hamed & Hooshmand, Rahmat-Allah & Nobakhtian, Soghra, 2023. "Observable placement of phasor measurement units for defense against data integrity attacks in real time power markets," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Zhang, Xi & Liu, Dong & Tu, Haicheng & Tse, Chi Kong, 2022. "An integrated modeling framework for cascading failure study and robustness assessment of cyber-coupled power grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Xie, Haipeng & Tang, Lingfeng & Zhu, Hao & Cheng, Xiaofeng & Bie, Zhaohong, 2023. "Robustness assessment and enhancement of deep reinforcement learning-enabled load restoration for distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Ding, Zhetong & Chen, Chunyu & Cui, Mingjian & Bi, Wenjun & Chen, Yang & Li, Fangxing, 2021. "Dynamic game-based defensive primary frequency control system considering intelligent attackers," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Jianguo Ding & Attia Qammar & Zhimin Zhang & Ahmad Karim & Huansheng Ning, 2022. "Cyber Threats to Smart Grids: Review, Taxonomy, Potential Solutions, and Future Directions," Energies, MDPI, vol. 15(18), pages 1-37, September.
    8. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.
    9. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Li, Yanfu & Zio, Enrico, 2012. "Uncertainty analysis of the adequacy assessment model of a distributed generation system," Renewable Energy, Elsevier, vol. 41(C), pages 235-244.
    11. Martínez-Lao, Juan & Montoya, Francisco G. & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2017. "Electric vehicles in Spain: An overview of charging systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 970-983.
    12. Witold Torbacki, 2021. "A Hybrid MCDM Model Combining DANP and PROMETHEE II Methods for the Assessment of Cybersecurity in Industry 4.0," Sustainability, MDPI, vol. 13(16), pages 1-35, August.
    13. Rozmysław Mieński & Przemysław Urbanek & Irena Wasiak, 2021. "Using Energy Storage Inverters of Prosumer Installations for Voltage Control in Low-Voltage Distribution Networks," Energies, MDPI, vol. 14(4), pages 1-21, February.
    14. Yanshan Yu & Jin Yang & Bin Chen, 2012. "The Smart Grids in China—A Review," Energies, MDPI, vol. 5(5), pages 1-18, May.
    15. Shabana Urooj & Fadwa Alrowais & Yuvaraja Teekaraman & Hariprasath Manoharan & Ramya Kuppusamy, 2021. "IoT Based Electric Vehicle Application Using Boosting Algorithm for Smart Cities," Energies, MDPI, vol. 14(4), pages 1-16, February.
    16. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    17. Kalina Grzesiuk & Dorota Jegorow & Monika Wawer & Anna Głowacz, 2023. "Energy-Efficient City Transportation Solutions in the Context of Energy-Conserving and Mobility Behaviours of Generation Z," Energies, MDPI, vol. 16(15), pages 1-28, August.
    18. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    19. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    20. Mah, Daphne Ngar-yin & van der Vleuten, Johannes Marinus & Hills, Peter & Tao, Julia, 2012. "Consumer perceptions of smart grid development: Results of a Hong Kong survey and policy implications," Energy Policy, Elsevier, vol. 49(C), pages 204-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.