IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01758604.html
   My bibliography  Save this paper

A fuzzy multi-criteria decision making approach for managing performance and risk in integrated procurement-production planning

Author

Listed:
  • Rihab Khemiri

    (University of Tunis - Faculty of Sciences of Tunis - UTM - Université de Tunis El Manar)

  • Khaoula Elbedoui-Maktouf

    (University of Tunis - Faculty of Sciences of Tunis - UTM - Université de Tunis El Manar)

  • Bernard Grabot

    (LGP - Laboratoire Génie de Production - ENIT - Ecole Nationale d'Ingénieurs de Tarbes - Toulouse INP - Institut National Polytechnique (Toulouse) - UT - Université de Toulouse)

  • Belhassen Zouari

    (Mediatron Laboratory - Higher communications school of Tunis)

Abstract

Nowadays in Supply Chain (SC) networks, a high level of risk comes from SC partners. An effective risk management process becomes as a consequence mandatory, especially at the tactical planning level. The aim of this article is to present a risk-oriented integrated procurement–production approach for tactical planning in a multi-echelon SC network involving multiple suppliers, multiple parallel manufacturing plants, multiple subcontractors and several customers. An originality of the work is to combine an analytical model allowing to build feasible scenarios and a multi-criteria approach for assessing these scenarios. The literature has mainly addressed the problem through cost or profit-based optimisation and seldom considers more qualitative yet important criteria linked to risk, like trust in the supplier, flexibility or resilience. Unlike the traditional approaches, we present a method evaluating each possible supply scenario through performance-based and risk-based decision criteria, involving both qualitative and quantitative factors, in order to clearly separate the performance of a scenario and the risk taken if it is adopted. Since the decision-maker often cannot provide crisp values for some critical data, fuzzy sets theory is suggested in order to model vague information based on subjective expertise. Fuzzy Technique for Order of Preference by Similarity to Ideal Solution is used to determine both the performance and risk measures correlated to each possible tactical plan. The applicability and tractability of the proposed approach is shown on an illustrative example and a sensitivity analysis is performed to investigate the influence of criteria weights on the selection of the procurement–production plan.

Suggested Citation

  • Rihab Khemiri & Khaoula Elbedoui-Maktouf & Bernard Grabot & Belhassen Zouari, 2017. "A fuzzy multi-criteria decision making approach for managing performance and risk in integrated procurement-production planning," Post-Print hal-01758604, HAL.
  • Handle: RePEc:hal:journl:hal-01758604
    DOI: 10.1080/00207543.2017.1308575
    Note: View the original document on HAL open archive server: https://hal.science/hal-01758604
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01758604/document
    Download Restriction: no

    File URL: https://libkey.io/10.1080/00207543.2017.1308575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hatami-Marbini, Adel & Tavana, Madjid, 2011. "An extension of the Electre I method for group decision-making under a fuzzy environment," Omega, Elsevier, vol. 39(4), pages 373-386, August.
    2. Weber, Charles A. & Current, John R. & Benton, W. C., 1991. "Vendor selection criteria and methods," European Journal of Operational Research, Elsevier, vol. 50(1), pages 2-18, January.
    3. Chou, Shuo-Yan & Chang, Yao-Hui & Shen, Chun-Ying, 2008. "A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes," European Journal of Operational Research, Elsevier, vol. 189(1), pages 132-145, August.
    4. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    5. Gigović, Ljubomir & Pamučar, Dragan & Božanić, Darko & Ljubojević, Srđan, 2017. "Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia," Renewable Energy, Elsevier, vol. 103(C), pages 501-521.
    6. Chen, Chen-Tung & Lin, Ching-Torng & Huang, Sue-Fn, 2006. "A fuzzy approach for supplier evaluation and selection in supply chain management," International Journal of Production Economics, Elsevier, vol. 102(2), pages 289-301, August.
    7. Wang, Reay-Chen & Liang, Tien-Fu, 2005. "Applying possibilistic linear programming to aggregate production planning," International Journal of Production Economics, Elsevier, vol. 98(3), pages 328-341, December.
    8. J. P. Brans & Ph. Vincke, 1985. "Note---A Preference Ranking Organisation Method," Management Science, INFORMS, vol. 31(6), pages 647-656, June.
    9. Kim, Gyutai & Park, Chan S. & Yoon, K. Paul, 1997. "Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement," International Journal of Production Economics, Elsevier, vol. 50(1), pages 23-33, May.
    10. Mafakheri, Fereshteh & Breton, Michele & Ghoniem, Ahmed, 2011. "Supplier selection-order allocation: A two-stage multiple criteria dynamic programming approach," International Journal of Production Economics, Elsevier, vol. 132(1), pages 52-57, July.
    11. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Frank Werner & Marina Ivanova, 2016. "A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory industry 4.0," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 386-402, January.
    12. Selim, Hasan & Araz, Ceyhun & Ozkarahan, Irem, 2008. "Collaborative production-distribution planning in supply chain: A fuzzy goal programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(3), pages 396-419, May.
    13. Goyal, S. K. & Deshmukh, S. G., 1992. "Integrated procurement-production systems: A review," European Journal of Operational Research, Elsevier, vol. 62(1), pages 1-10, October.
    14. Mirzapour Al-e-hashem, S.M.J. & Malekly, H. & Aryanezhad, M.B., 2011. "A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty," International Journal of Production Economics, Elsevier, vol. 134(1), pages 28-42, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    2. Xiaomin Xu & Qiong Wang & Dongxiao Niu & Lihui Zhang, 2018. "Synergistic Effect Evaluation of Main and Auxiliary Industry of Power Grid Based on the Information Fusion Technology from the Perspective of Sustainable Development of Enterprises," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    3. L. Herlina & Machfud & E. Anggraeni & Sukardi, 2019. "Pareto-based algorithm for adaptive aggregate production and distribution planning in shrimp agroindustry supply chain," Journal of Applied and Physical Sciences, Prof. Vakhrushev Alexander, vol. 5(1), pages 21-29.
    4. Rukundo Jean D'amour & Mukamuhirwa Floride & Nsigaye Alfred, 2020. "Effect of organic, inorganic fertilizers and their combination on vegetative growth and production of common bush beans RWR2245 variety in Rwanda," Journal of Applied and Physical Sciences, Prof. Vakhrushev Alexander, vol. 6(1), pages 18-24.
    5. Pereira, Daniel Filipe & Oliveira, José Fernando & Carravilla, Maria Antónia, 2020. "Tactical sales and operations planning: A holistic framework and a literature review of decision-making models," International Journal of Production Economics, Elsevier, vol. 228(C).
    6. Meng, Lin & Lv, Wangyong & Yuan, George Xianzhi & Wang, Huiqi, 2023. "The dynamic risk profiles and management strategies in supply chain coopetition under altruistic preference," International Review of Financial Analysis, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed, Ahmed & Harris, Irina & Govindan, Kannan, 2019. "A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation," International Journal of Production Economics, Elsevier, vol. 217(C), pages 171-184.
    2. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    3. Kannan Govindan & R. Sivakumar, 2016. "Green supplier selection and order allocation in a low-carbon paper industry: integrated multi-criteria heterogeneous decision-making and multi-objective linear programming approaches," Annals of Operations Research, Springer, vol. 238(1), pages 243-276, March.
    4. Kannan Govindan & R. Sivakumar, 2016. "Green supplier selection and order allocation in a low-carbon paper industry: integrated multi-criteria heterogeneous decision-making and multi-objective linear programming approaches," Annals of Operations Research, Springer, vol. 238(1), pages 243-276, March.
    5. Xiongyong Zhou & Zhiduan Xu, 2018. "An Integrated Sustainable Supplier Selection Approach Based on Hybrid Information Aggregation," Sustainability, MDPI, vol. 10(7), pages 1-49, July.
    6. Bilbao-Terol, Amelia & Arenas-Parra, Mar & Cañal-Fernández, Verónica & Antomil-Ibias, José, 2014. "Using TOPSIS for assessing the sustainability of government bond funds," Omega, Elsevier, vol. 49(C), pages 1-17.
    7. Pires, Ana & Chang, Ni-Bin & Martinho, Graça, 2011. "An AHP-based fuzzy interval TOPSIS assessment for sustainable expansion of the solid waste management system in Setúbal Peninsula, Portugal," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 7-21.
    8. F. Jolai & J. Razmi & N. Rostami, 2011. "A fuzzy goal programming and meta heuristic algorithms for solving integrated production: distribution planning problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(4), pages 547-569, December.
    9. Wanke, Peter & Pestana Barros, Carlos & Chen, Zhongfei, 2015. "An analysis of Asian airlines efficiency with two-stage TOPSIS and MCMC generalized linear mixed models," International Journal of Production Economics, Elsevier, vol. 169(C), pages 110-126.
    10. Tavana, Madjid & Di Caprio, Debora, 2016. "Modeling synergies in multi-criteria supplier selection and order allocation: An application to commodity tradingAuthor-Name: Sodenkamp, Mariya A," European Journal of Operational Research, Elsevier, vol. 254(3), pages 859-874.
    11. Peter Wanke & Carlos Barros & Nkanga Pedro João Macanda, 2016. "Predicting Efficiency in Angolan Banks: A Two-Stage TOPSIS and Neural Networks Approach," South African Journal of Economics, Economic Society of South Africa, vol. 84(3), pages 461-483, September.
    12. S. Abbas Sadatian & S. Davood Sadatian & Masoumeh Asiaei & S. Ali Reza Davoodi, 2022. "Providing a model for evaluating and selecting suppliers of three-phase self-sustaining cables using the interactive approach of analytical hierarchical process and goal programming," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1649-1666, December.
    13. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    14. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    15. Caetani, Alberto Pavlick & Ferreira, Luciano & Borenstein, Denis, 2016. "Development of an integrated decision-making method for an oil refinery restructuring in Brazil," Energy, Elsevier, vol. 111(C), pages 197-210.
    16. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    17. Almoghathawi, Yasser & Barker, Kash & Rocco, Claudio M. & Nicholson, Charles D., 2017. "A multi-criteria decision analysis approach for importance identification and ranking of network components," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 142-151.
    18. Ghadimi, Pezhman & Ghassemi Toosi, Farshad & Heavey, Cathal, 2018. "A multi-agent systems approach for sustainable supplier selection and order allocation in a partnership supply chain," European Journal of Operational Research, Elsevier, vol. 269(1), pages 286-301.
    19. Prabhat Kumar & Puneet Tandon, 2019. "A paradigm for customer-driven product design approach using extended axiomatic design," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 589-603, February.
    20. Mohammad Rahman & Lena Jaumann & Nils Lerche & Fabian Renatus & Ann Buchs & Rudolf Gade & Jutta Geldermann & Martin Sauter, 2015. "Selection of the Best Inland Waterway Structure: A Multicriteria Decision Analysis Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2733-2749, June.

    More about this item

    Keywords

    Procurement; Supply chain management; Multi-criteria decision-making; Risk management; Fuzzy sets theory; Fuzzy logic;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01758604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.