IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v221y2022ics095183202100778x.html
   My bibliography  Save this article

Analyzing vulnerability of optical fiber network considering recoverability

Author

Listed:
  • Wang, Ke
  • Liu, Jinfeng
  • Tian, Lai
  • Tan, Xianfeng
  • Peng, Guansheng
  • Qin, Tianwen
  • Wu, Jun

Abstract

With the development of optical transmission technology, optical fiber networks have become critical infrastructures in supporting information transmission on the Internet. However, the fiber cable is very vulnerable to large-scale damage such as earthquakes or pulse bombs. What is more serious is that it will take a long time to locate and repair the damages on fiber links. The long-term repair process will cause continuous network performance degradation and severe economic loss. The fact is that these dangerous areas may be ignored by traditional vulnerability analysis models. To solve this problem, this paper proposes a method to analyze the vulnerability of fiber networks based on network recoverability. We first improve the traditional fiber network simulation methods and damage simulation methods to provide a compatible foundation for the network recoverability simulation. Then, we present the network vulnerability analysis model: the Damage Measurement and Location Model (DMLM). The model employs the heuristic traversal algorithm based on random points to locate the candidate attack positions. We design three vulnerability metrics: two metrics are related to network recoverability and one metric is used for comparison. We also build their corresponding theoretical frameworks to determine the appropriate model parameters to satisfy the specified estimation error requirements. Numerical results prove the proposed model’s effectiveness and excellent sensitivity for essential parameters. The visual results of the vulnerable zones prove the necessity of considering network recoverability in vulnerability analysis of optical fiber networks.

Suggested Citation

  • Wang, Ke & Liu, Jinfeng & Tian, Lai & Tan, Xianfeng & Peng, Guansheng & Qin, Tianwen & Wu, Jun, 2022. "Analyzing vulnerability of optical fiber network considering recoverability," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:reensy:v:221:y:2022:i:c:s095183202100778x
    DOI: 10.1016/j.ress.2021.108308
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202100778X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ke Wang & Yong Li & Jun Wu, 2019. "Identifying multiple vulnerable areas of infrastructure network under global connectivity measure," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 30(07), pages 1-17, July.
    2. Shafieezadeh, Abdollah & Ivey Burden, Lindsay, 2014. "Scenario-based resilience assessment framework for critical infrastructure systems: Case study for seismic resilience of seaports," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 207-219.
    3. Cao, Quoc Dung & Miles, Scott B. & Choe, Youngjun, 2022. "Infrastructure recovery curve estimation using Gaussian process regression on expert elicited data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Yang, Li & Ye, Zhi-sheng & Lee, Chi-Guhn & Yang, Su-fen & Peng, Rui, 2019. "A two-phase preventive maintenance policy considering imperfect repair and postponed replacement," European Journal of Operational Research, Elsevier, vol. 274(3), pages 966-977.
    5. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    6. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    8. Arvidsson, Björn & Johansson, Jonas & Guldåker, Nicklas, 2021. "Critical infrastructure, geographical information science and risk governance: A systematic cross-field review," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Cheng, Yao & Elsayed, E.A. & Chen, Xi, 2021. "Random Multi Hazard Resilience Modeling of Engineered Systems and Critical Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    10. Chen, Weiyi & Zhang, Limao, 2021. "Resilience assessment of regional areas against earthquakes using multi-source information fusion," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    12. Ouyang, Min & Liu, Chuang & Xu, Min, 2019. "Value of resilience-based solutions on critical infrastructure protection: Comparing with robustness-based solutions," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    13. Galvan, Giulio & Agarwal, Jitendra, 2020. "Assessing the vulnerability of infrastructure networks based on distribution measures," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Watson, Bryan C & Morris, Zack B & Weissburg, Marc & Bras, Bert, 2023. "System of system design-for-resilience heuristics derived from forestry case study variants," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Kameshwar, Sabarethinam & Cox, Daniel T. & Barbosa, Andre R. & Farokhnia, Karim & Park, Hyoungsu & Alam, Mohammad S. & van de Lindt, John W., 2019. "Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. HIMOTO, Keisuke & SAWADA, Yuto & OHMIYA, Yoshifumi, 2024. "Quantifying fire resilience of buildings considering the impact of water damage accompanied by fire extinguishment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    7. Li, Yuhong & Zobel, Christopher W. & Seref, Onur & Chatfield, Dean, 2020. "Network characteristics and supply chain resilience under conditions of risk propagation," International Journal of Production Economics, Elsevier, vol. 223(C).
    8. Cerqueti, Roy & Ferraro, Giovanna & Iovanella, Antonio, 2019. "Measuring network resilience through connection patterns," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 320-329.
    9. Shuai Lin & Limin Jia & Hengrun Zhang & Yanhui Wang, 2021. "A method for assessing resilience of high-speed EMUs considering a network-based system topology and performance data," Journal of Risk and Reliability, , vol. 235(5), pages 877-895, October.
    10. Wu, Jingyi & Yu, Yang & Yu, Jianxing & Chang, Xueying & Xu, Lixin & Zhang, Wenhao, 2023. "A Markov resilience assessment framework for tension leg platform under mooring failure," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Kamali, Behnaz & Ziaei, Ali Naghi & Beheshti, Aliasghar & Farmani, Raziyeh, 2022. "An open-source toolbox for investigating functional resilience in sewer networks based on global resilience analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    12. Xu, Sheng & Xia, Yongxiang & Ouyang, Min, 2020. "Effect of resource allocation to the recovery of scale-free networks during cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    13. Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
    14. Du, Ao & Wang, Xiaowei & Xie, Yazhou & Dong, You, 2023. "Regional seismic risk and resilience assessment: Methodological development, applicability, and future research needs – An earthquake engineering perspective," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    15. Ferrario, E. & Poulos, A. & Castro, S. & de la Llera, J.C. & Lorca, A., 2022. "Predictive capacity of topological measures in evaluating seismic risk and resilience of electric power networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    16. Liu, Jin & Zhai, Changhai & Yu, Peng, 2022. "A Probabilistic Framework to Evaluate Seismic Resilience of Hospital Buildings Using Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    17. Caputo, Antonio C. & Kalemi, Bledar & Paolacci, Fabrizio & Corritore, Daniele, 2020. "Computing resilience of process plants under Na-Tech events: Methodology and application to sesmic loading scenarios," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    18. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    19. Bucar, Raif C.B. & Hayeri, Yeganeh M., 2022. "Quantitative flood risk evaluation to improve drivers’ route choice decisions during disruptive precipitation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    20. Shen, Lijuan & Tang, Yanlin & Tang, Loon Ching, 2021. "Understanding key factors affecting power systems resilience," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:221:y:2022:i:c:s095183202100778x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.