IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v218y2022ipbs0951832021006827.html
   My bibliography  Save this article

An open-source toolbox for investigating functional resilience in sewer networks based on global resilience analysis

Author

Listed:
  • Kamali, Behnaz
  • Ziaei, Ali Naghi
  • Beheshti, Aliasghar
  • Farmani, Raziyeh

Abstract

Resilience analysis of urban infrastructures such as sewerage systems is very important due to different stressors. Failure in these infrastructures may lead to economic, social, health and environmental consequences. The functional resilience of systems can be analyzed in all failure levels caused by unpredictable or even unknown events based on the global resilience analysis (GRA) method. To perform GRA under different scenarios of pipe collapse and blockage, the performance of the system must be evaluated in all possible link failure combinations. The time of this process might be unfeasibly long in real sewerage networks. In this paper, an open-source toolbox is developed which uses a proposed scenario selection method based on roulette wheel to perform GRA without simulating all possible scenarios. This toolbox is based on a proposed O-SWMM API which is a developed version of EPA's Storm Water Management Model (SWMM) to optimize simulation time and memory usage. The results show that the mean resilience for a sample and also a real sewer network was estimated by the proposed method with RMSE less than 0.025 and 0.022 respectively comparing with simulating all possible scenarios. Moreover, the GRA computation using O-SWMM API was at least 2.26 times faster than SWMM.exe.

Suggested Citation

  • Kamali, Behnaz & Ziaei, Ali Naghi & Beheshti, Aliasghar & Farmani, Raziyeh, 2022. "An open-source toolbox for investigating functional resilience in sewer networks based on global resilience analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
  • Handle: RePEc:eee:reensy:v:218:y:2022:i:pb:s0951832021006827
    DOI: 10.1016/j.ress.2021.108201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021006827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Yan Long & Yilin Yang & Xiaohui Lei & Yu Tian & Youming Li, 2019. "Integrated Assessment Method of Emergency Plan for Sudden Water Pollution Accidents Based on Improved TOPSIS, Shannon Entropy and a Coordinated Development Degree Model," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    3. Abteen Ijadi Maghsoodi & Gelayol Abouhamzeh & Mohammad Khalilzadeh & Edmundas Kazimieras Zavadskas, 2018. "Ranking and selecting the best performance appraisal method using the MULTIMOORA approach integrated Shannon’s entropy," Frontiers of Business Research in China, Springer, vol. 12(1), pages 1-21, December.
    4. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    5. Jonas Johansson & Henrik Hassel & Alexander Cedergren, 2011. "Vulnerability analysis of interdependent critical infrastructures: case study of the Swedish railway system," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 7(4), pages 289-316.
    6. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Nan, Cen & Sansavini, Giovanni, 2017. "A quantitative method for assessing resilience of interdependent infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 35-53.
    8. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    9. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    10. Cai, Baoping & Zhang, Yanping & Wang, Haifeng & Liu, Yonghong & Ji, Renjie & Gao, Chuntan & Kong, Xiangdi & Liu, Jing, 2021. "Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Sun, Qin & Li, Hongxu & Wang, Yuzhi & Zhang, Yingchao, 2022. "Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Wu, Jingyi & Yu, Yang & Yu, Jianxing & Chang, Xueying & Xu, Lixin & Zhang, Wenhao, 2023. "A Markov resilience assessment framework for tension leg platform under mooring failure," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A resilience-based framework for the optimal coupling of interdependent critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Tiong, Achara & Vergara, Hector A., 2023. "A two-stage stochastic multi-objective resilience optimization model for network expansion of interdependent power–water networks under disruption," International Journal of Critical Infrastructure Protection, Elsevier, vol. 40(C).
    8. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    9. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Moglen, Rachel L. & Barth, Julius & Gupta, Shagun & Kawai, Eiji & Klise, Katherine & Leibowicz, Benjamin D., 2023. "A nexus approach to infrastructure resilience planning under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    12. Dui, Hongyan & Zhu, Yawen & Tao, Junyong, 2024. "Multi-phased resilience methodology of urban sewage treatment network based on the phase and node recovery importance in IoT," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    13. Maddah, Negin & Heydari, Babak, 2024. "Building back better: Modeling decentralized recovery in sociotechnical systems using strategic network dynamics," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    14. Kameshwar, Sabarethinam & Cox, Daniel T. & Barbosa, Andre R. & Farokhnia, Karim & Park, Hyoungsu & Alam, Mohammad S. & van de Lindt, John W., 2019. "Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    15. HIMOTO, Keisuke & SAWADA, Yuto & OHMIYA, Yoshifumi, 2024. "Quantifying fire resilience of buildings considering the impact of water damage accompanied by fire extinguishment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Mühlhofer, Evelyn & Koks, Elco E. & Kropf, Chahan M. & Sansavini, Giovanni & Bresch, David N., 2023. "A generalized natural hazard risk modelling framework for infrastructure failure cascades," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    17. Watson, Bryan C & Morris, Zack B & Weissburg, Marc & Bras, Bert, 2023. "System of system design-for-resilience heuristics derived from forestry case study variants," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    18. Claudio M Rocco & Kash Barker & Jose Moronta & Jose E Ramirez-Marquez, 2018. "Community detection and resilience in multi-source, multi-terminal networks," Journal of Risk and Reliability, , vol. 232(6), pages 616-626, December.
    19. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Sun, Hao & Yang, Ming & Wang, Haiqing, 2024. "An integrated approach to quantitative resilience assessment in process systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:218:y:2022:i:pb:s0951832021006827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.