IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v225y2022ics0951832022002162.html
   My bibliography  Save this article

Green port oriented resilience improvement for traffic-power coupled networks

Author

Listed:
  • Zhen, Lu
  • Lin, Shumin
  • Zhou, Chenhao

Abstract

Under the green ports initiative, port operations rely more on electric power. However, the power system is vulnerable to disruptions. Its ability to resist disruption seriously affects port resilience, which is related to the port operation’s level and performance. To maintain a resilient port, its infrastructure needs to be well designed and coordinated to prevent or reduce losses from disruptions. Therefore, some policies are proposed to improve port resilience under various disruption scenarios by focusing on the traffic-electric power coupled system and optimizing the planning level and operational level decisions. A two-stage, stochastic, and nonlinear mathematical programming model is established to model systems’ interaction and describe the impacts of preparedness and recovery actions with the objective of maximizing port resilience under a certain budget. The experimental results show that the improved coupled system can greatly improve the port resilience. In addition, the resilience of the port can also be improved by optimizing the investment in the power network and the equipment scheduling in the container transportation network. Some forward-looking managerial implications have been revealed.

Suggested Citation

  • Zhen, Lu & Lin, Shumin & Zhou, Chenhao, 2022. "Green port oriented resilience improvement for traffic-power coupled networks," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002162
    DOI: 10.1016/j.ress.2022.108569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022002162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Xinhu & Lam, Jasmine Siu Lee, 2019. "A fast reaction-based port vulnerability assessment: Case of Tianjin Port explosion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 11-33.
    2. Shafieezadeh, Abdollah & Ivey Burden, Lindsay, 2014. "Scenario-based resilience assessment framework for critical infrastructure systems: Case study for seismic resilience of seaports," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 207-219.
    3. Almutairi, Ayedh & Collier, Zachary A. & Hendrickson, Daniel & Palma-Oliveira, José M. & Polmateer, Thomas L. & Lambert, James H., 2019. "Stakeholder mapping and disruption scenarios with application to resilience of a container port," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 219-232.
    4. Heimir Thorisson & James H. Lambert & John J. Cardenas & Igor Linkov, 2017. "Resilience Analytics with Application to Power Grid of a Developing Region," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1268-1286, July.
    5. Lichun Chen & Elise Miller-Hooks, 2012. "Resilience: An Indicator of Recovery Capability in Intermodal Freight Transport," Transportation Science, INFORMS, vol. 46(1), pages 109-123, February.
    6. Pitilakis, Kyriazis & Argyroudis, Sotiris & Fotopoulou, Stavroula & Karafagka, Stella & Kakderi, Kalliopi & Selva, Jacopo, 2019. "Application of stress test concepts for port infrastructures against natural hazards. The case of Thessaloniki port in Greece," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 240-257.
    7. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    8. Yacov Y. Haimes, 2009. "On the Definition of Resilience in Systems," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 498-501, April.
    9. Yang, Yi-Chih & Ge, Ying-En, 2020. "Adaptation strategies for port infrastructure and facilities under climate change at the Kaohsiung port," Transport Policy, Elsevier, vol. 97(C), pages 232-244.
    10. Asadabadi, Ali & Miller-Hooks, Elise, 2018. "Co-opetition in enhancing global port network resiliency: A multi-leader, common-follower game theoretic approach," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 281-298.
    11. Mansouri, Mo & Nilchiani, Roshanak & Mostashari, Ali, 2010. "A policy making framework for resilient port infrastructure systems," Marine Policy, Elsevier, vol. 34(6), pages 1125-1134, November.
    12. Rose, Adam & Wei, Dan & Paul, Donald, 2018. "Economic consequences of and resilience to a disruption of petroleum trade: The role of seaports in U.S. energy security," Energy Policy, Elsevier, vol. 115(C), pages 584-615.
    13. Fotouhi, Hossein & Moryadee, Seksun & Miller-Hooks, Elise, 2017. "Quantifying the resilience of an urban traffic-electric power coupled system," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 79-94.
    14. Vodopivec, Neža & Miller-Hooks, Elise, 2019. "Transit system resilience: Quantifying the impacts of disruptions on diverse populations," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    15. Mark Turnquist & Eric Vugrin, 2013. "Design for resilience in infrastructure distribution networks," Environment Systems and Decisions, Springer, vol. 33(1), pages 104-120, March.
    16. Hui Shan Loh & Vinh V. Thai, 2016. "Managing port-related supply chain disruptions (PSCDs): a management model and empirical evidence," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(4), pages 436-455, May.
    17. Mayada Omer & Ali Mostashari & Roshanak Nilchiani & Mo Mansouri, 2012. "A framework for assessing resiliency of maritime transportation systems," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(7), pages 685-703, December.
    18. Shahverdi, Bahar & Tariverdi, Mersedeh & Miller-Hooks, Elise, 2020. "Assessing hospital system resilience to disaster events involving physical damage and Demand Surge," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    19. Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Son-Tung Le & Trung-Hieu Nguyen, 2023. "The Development of Green Ports in Emerging Nations: A Case Study of Vietnam," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    2. Wang, Nanxi & Wu, Min & Yuen, Kum Fai, 2023. "Assessment of port resilience using Bayesian network: A study of strategies to enhance readiness and response capacities," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Zhong, Yuanfu & Li, Hongxu & Sun, Qin & Huang, Zhiwen & Zhang, Yingchao, 2024. "A kill chain optimization method for improving the resilience of unmanned combat system-of-systems," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Nanxi & Wu, Min & Yuen, Kum Fai, 2023. "Assessment of port resilience using Bayesian network: A study of strategies to enhance readiness and response capacities," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
    3. HOSSAIN, Niamat Ullah Ibne & Amrani, Safae El & Jaradat, Raed & Marufuzzaman, Mohammad & Buchanan, Randy & Rinaudo, Christina & Hamilton, Michael, 2020. "Modeling and assessing interdependencies between critical infrastructures using Bayesian network: A case study of inland waterway port and surrounding supply chain network," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Asadabadi, Ali & Miller-Hooks, Elise, 2020. "Maritime port network resiliency and reliability through co-opetition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    5. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Networks and Spatial Economics, Springer, vol. 20(2), pages 423-447, June.
    6. Dui, Hongyan & Zheng, Xiaoqian & Wu, Shaomin, 2021. "Resilience analysis of maritime transportation systems based on importance measures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    7. Corinne Curt & Jean‐Marc Tacnet, 2018. "Resilience of Critical Infrastructures: Review and Analysis of Current Approaches," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2441-2458, November.
    8. Li, Zhaolong & Jin, Chun & Hu, Pan & Wang, Cong, 2019. "Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 503-514.
    9. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    10. Cremen, Gemma & Bozzoni, Francesca & Pistorio, Silvia & Galasso, Carmine, 2022. "Developing a risk-informed decision-support system for earthquake early warning at a critical seaport," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    11. Li, Wenjie & Asadabadi, Ali & Miller-Hooks, Elise, 2022. "Enhancing resilience through port coalitions in maritime freight networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 1-23.
    12. Asadabadi, Ali & Miller-Hooks, Elise, 2018. "Co-opetition in enhancing global port network resiliency: A multi-leader, common-follower game theoretic approach," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 281-298.
    13. Jasper Verschuur & Raghav Pant & Elco Koks & Jim Hall, 2022. "A systemic risk framework to improve the resilience of port and supply-chain networks to natural hazards," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 489-506, September.
    14. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    15. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Wang, Bi & Chin, Kwai Sang & Su, Qin, 2022. "Prevention and adaptation to diversified risks in the seaport–dry port system under asymmetric risk behaviors: Invest earlier or wait?," Transport Policy, Elsevier, vol. 125(C), pages 11-36.
    17. Cassottana, Beatrice & Shen, Lijuan & Tang, Loon Ching, 2019. "Modeling the recovery process: A key dimension of resilience," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    18. Almutairi, Ayedh & Collier, Zachary A. & Hendrickson, Daniel & Palma-Oliveira, José M. & Polmateer, Thomas L. & Lambert, James H., 2019. "Stakeholder mapping and disruption scenarios with application to resilience of a container port," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 219-232.
    19. Wenjie Li & Elise Miller-Hooks, 2023. "Understanding the implications of port-related workforce shortages on global maritime performance through the study of a carrier alliance," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 452-478, September.
    20. Shital A. Thekdi & Joost Santos, 2019. "Decision‐Making Analytics Using Plural Resilience Parameters for Adaptive Management of Complex Systems," Risk Analysis, John Wiley & Sons, vol. 39(4), pages 871-889, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.