IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p8735-d1495463.html
   My bibliography  Save this article

Assessing the Resilience of Critical Infrastructure Facilities toward a Holistic and Theoretical Approach: A Multi-Scenario Evidence and Case Study

Author

Listed:
  • Georges Irankunda

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Wei Zhang

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Muhirwa Fernand

    (Hubei Key Laboratory of Geotechnical and Structural Safety, School of Civil Engineering, Wuhan University, Wuhan 430072, China)

  • Jianrong Zhang

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Given the increasing frequency of natural disasters, which result in substantial damage to critical infrastructures and disrupt the functioning of modern societies, numerous studies have been conducted in recent decades to propose sustainable preventive and enhancement measures to safeguard the environmental and societal development. This paper contributes to the existing literature by introducing a novel environmentally conscious infrastructural resilience assessment approach named the Novel Infrastructure Resilience Assessment Curve (NIRAC). Unlike past works which typically focused on a single infrastructure scenario, the NIRAC is conceptualized around multi-scenario resilience assets, integrating sustainable principles to enhance environmental resilience. Additionally, this paper presents a road infrastructure resilience assessment (RIRA) framework, developed from factors and dimensions pertinent to road infrastructure resilience and environmental sustainability. The RIRA framework is applied to a case study of a road damaged by heavy rains, emphasizing the need for sustainable recovery efforts which minimize environmental impact. The results demonstrate the effectiveness of the RIRA framework in guiding road recovery efforts. The insights provided in this paper are valuable for disaster managers and policymakers, as they extend their resilience assessment knowledge with a focus on sustainable development and environmental protection. This expanded knowledge facilitates the implementation of appropriate interventions to prevent and mitigate the societal consequences of disasters more efficiently.

Suggested Citation

  • Georges Irankunda & Wei Zhang & Muhirwa Fernand & Jianrong Zhang, 2024. "Assessing the Resilience of Critical Infrastructure Facilities toward a Holistic and Theoretical Approach: A Multi-Scenario Evidence and Case Study," Sustainability, MDPI, vol. 16(20), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8735-:d:1495463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/8735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/8735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shafieezadeh, Abdollah & Ivey Burden, Lindsay, 2014. "Scenario-based resilience assessment framework for critical infrastructure systems: Case study for seismic resilience of seaports," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 207-219.
    2. Philip R. Berke & Thomas J. Campanella, 2006. "Planning for Postdisaster Resiliency," The ANNALS of the American Academy of Political and Social Science, , vol. 604(1), pages 192-207, March.
    3. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Susanne Moser & Sara Meerow & James Arnott & Emily Jack-Scott, 2019. "The turbulent world of resilience: interpretations and themes for transdisciplinary dialogue," Climatic Change, Springer, vol. 153(1), pages 21-40, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cremen, Gemma & Bozzoni, Francesca & Pistorio, Silvia & Galasso, Carmine, 2022. "Developing a risk-informed decision-support system for earthquake early warning at a critical seaport," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Riffat Mahmood & Li Zhang & Guoqing Li & Munshi Khaledur Rahman, 2022. "Geo-based model of intrinsic resilience to climate change: an approach to nature-based solution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11969-11990, October.
    3. Shen, Lijuan & Cassottana, Beatrice & Tang, Loon Ching, 2018. "Statistical trend tests for resilience of power systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 138-147.
    4. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Sun, Qin & Li, Hongxu & Wang, Yuzhi & Zhang, Yingchao, 2022. "Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Networks and Spatial Economics, Springer, vol. 20(2), pages 423-447, June.
    7. Kameshwar, Sabarethinam & Cox, Daniel T. & Barbosa, Andre R. & Farokhnia, Karim & Park, Hyoungsu & Alam, Mohammad S. & van de Lindt, John W., 2019. "Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. Edyta Pijet-Migoń & Piotr Migoń, 2024. "New Geo- and Mining Heritage-Based Tourist Destinations in the Sudetes (SW Poland)—Towards More Effective Resilience of Local Communities," Sustainability, MDPI, vol. 16(13), pages 1-28, June.
    9. Soubry, Bernard & Sherren, Kate, 2022. ""You keep using that word...": Disjointed definitions of resilience in food systems adaptation," Land Use Policy, Elsevier, vol. 114(C).
    10. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Haritha, P.C. & Anjaneyulu, M.V.L.R., 2024. "Comparison of topological functionality-based resilience metrics using link criticality," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Giffoni, Eduarda & Jude, Simon & Smith, Heather M. & Pollard, Simon J.T., 2022. "Real-life resilience: Exploring the organisational environment of international water utilities," Utilities Policy, Elsevier, vol. 79(C).
    13. HOSSAIN, Niamat Ullah Ibne & Amrani, Safae El & Jaradat, Raed & Marufuzzaman, Mohammad & Buchanan, Randy & Rinaudo, Christina & Hamilton, Michael, 2020. "Modeling and assessing interdependencies between critical infrastructures using Bayesian network: A case study of inland waterway port and surrounding supply chain network," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    14. Li, Qing & Li, Mingchu & Gong, Zhongqiang & Tian, Yuan & Zhang, Runfa, 2022. "Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    15. Asadabadi, Ali & Miller-Hooks, Elise, 2018. "Co-opetition in enhancing global port network resiliency: A multi-leader, common-follower game theoretic approach," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 281-298.
    16. Qian, Lanping & Bai, Yang & Wang, Wenya & Meng, Fanyi & Chen, Zhisong, 2023. "Natural gas crisis, system resilience and emergency responses: A China case," Energy, Elsevier, vol. 276(C).
    17. Mary Fastiggi & Sara Meerow & Thaddeus R Miller, 2021. "Governing urban resilience: Organisational structures and coordination strategies in 20 North American city governments," Urban Studies, Urban Studies Journal Limited, vol. 58(6), pages 1262-1285, May.
    18. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    19. Agrippina Mwangi & Rishikesh Sahay & Elena Fumagalli & Mikkel Gryning & Madeleine Gibescu, 2024. "Towards a Software-Defined Industrial IoT-Edge Network for Next-Generation Offshore Wind Farms: State of the Art, Resilience, and Self-X Network and Service Management," Energies, MDPI, vol. 17(12), pages 1-31, June.
    20. Junhong Hu & Mingshu Yang & Yunzhu Zhen, 2024. "A Review of Resilience Assessment and Recovery Strategies of Urban Rail Transit Networks," Sustainability, MDPI, vol. 16(15), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:8735-:d:1495463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.