IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v204y2010i3p513-521.html
   My bibliography  Save this article

From differential to difference importance measures for Markov reliability models

Author

Listed:
  • Do Van, Phuc
  • Barros, Anne
  • Bérenguer, Christophe

Abstract

This paper presents the development of the differential importance measures (DIM), proposed recently for the use in risk-informed decision-making, in the context of Markov reliability models. The proposed DIM are essentially based on directional derivatives. They can be used to quantify the relative contribution of a component (or a group of components, a state or a group of states) of the system on the total variation of system performance provoked by the changes in system parameters values. The estimation of DIM at steady state using only a single sample path of a Markov process is also investigated. A numerical example of a dynamic system is finally introduced to illustrate the use of DIM, as well as the advantages of proposed evaluation approaches.

Suggested Citation

  • Do Van, Phuc & Barros, Anne & Bérenguer, Christophe, 2010. "From differential to difference importance measures for Markov reliability models," European Journal of Operational Research, Elsevier, vol. 204(3), pages 513-521, August.
  • Handle: RePEc:eee:ejores:v:204:y:2010:i:3:p:513-521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00898-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marseguerra, M. & Zio, E. & Podofillini, L., 2005. "First-order differential sensitivity analysis of a nuclear safety system by Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 162-168.
    2. Borgonovo, E., 2010. "The reliability importance of components and prime implicants in coherent and non-coherent systems including total-order interactions," European Journal of Operational Research, Elsevier, vol. 204(3), pages 485-495, August.
    3. Zio, Enrico & Podofillini, Luca, 2006. "Accounting for components interactions in the differential importance measure," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1163-1174.
    4. Do Van, Phuc & Barros, Anne & Bérenguer, Christophe, 2008. "Reliability importance analysis of Markovian systems at steady state using perturbation analysis," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1605-1615.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shumin Li & Shubin Si & Liudong Xing & Shudong Sun, 2014. "Integrated importance of multi-state fault tree based on multi-state multi-valued decision diagram," Journal of Risk and Reliability, , vol. 228(2), pages 200-208, April.
    2. Zhu, Xiaoyan & Boushaba, Mahmoud & Coit, David W. & Benyahia, Azzeddine, 2017. "Reliability and importance measures for m-consecutive-k, l-out-of-n system with non-homogeneous Markov-dependent components," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 1-9.
    3. Xiaoyan Zhu & Way Kuo, 2014. "Importance measures in reliability and mathematical programming," Annals of Operations Research, Springer, vol. 212(1), pages 241-267, January.
    4. Rocco S., Claudio M. & Emmanuel Ramirez-Marquez, José, 2015. "Assessment of the transition-rates importance of Markovian systems at steady state using the unscented transformation," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 212-220.
    5. Borgonovo, Emanuele & Aliee, Hananeh & Glaß, Michael & Teich, Jürgen, 2016. "A new time-independent reliability importance measure," European Journal of Operational Research, Elsevier, vol. 254(2), pages 427-442.
    6. Mario Hellmich & Heinz-Peter Berg, 2013. "On the construction of component importance measures for semi-Markov systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 15-32, February.
    7. C M Rocco S, 2012. "Effects of the transition rate uncertainty on the steady state probabilities of Markov models using interval arithmetic," Journal of Risk and Reliability, , vol. 226(2), pages 234-245, April.
    8. Wu, Shaomin & Coolen, Frank P.A., 2013. "A cost-based importance measure for system components: An extension of the Birnbaum importance," European Journal of Operational Research, Elsevier, vol. 225(1), pages 189-195.
    9. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    10. Zhai, Qingqing & Yang, Jun & Xie, Min & Zhao, Yu, 2014. "Generalized moment-independent importance measures based on Minkowski distance," European Journal of Operational Research, Elsevier, vol. 239(2), pages 449-455.
    11. Claudio M Rocco S, 2013. "Affine arithmetic for assessing the uncertainty propagation on steady-state probabilities of Markov models owing to uncertainties in transition rates," Journal of Risk and Reliability, , vol. 227(5), pages 523-533, October.
    12. Tyrväinen, T., 2013. "Risk importance measures in the dynamic flowgraph methodology," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 35-50.
    13. Borgonovo, E. & Smith, C.L., 2012. "Composite multilinearity, epistemic uncertainty and risk achievement worth," European Journal of Operational Research, Elsevier, vol. 222(2), pages 301-311.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    2. Xiaoyan Zhu & Way Kuo, 2014. "Importance measures in reliability and mathematical programming," Annals of Operations Research, Springer, vol. 212(1), pages 241-267, January.
    3. E. Borgonovo & C. L. Smith, 2011. "A Study of Interactions in the Risk Assessment of Complex Engineering Systems: An Application to Space PSA," Operations Research, INFORMS, vol. 59(6), pages 1461-1476, December.
    4. Zhai, Qingqing & Yang, Jun & Xie, Min & Zhao, Yu, 2014. "Generalized moment-independent importance measures based on Minkowski distance," European Journal of Operational Research, Elsevier, vol. 239(2), pages 449-455.
    5. La Rovere, Stefano & Vestrucci, Paolo, 2012. "Investigation of the structure of a networked system," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 214-223.
    6. Borgonovo, E., 2010. "The reliability importance of components and prime implicants in coherent and non-coherent systems including total-order interactions," European Journal of Operational Research, Elsevier, vol. 204(3), pages 485-495, August.
    7. Gao, Xueli & Cui, Lirong & Li, Jinlin, 2007. "Analysis for joint importance of components in a coherent system," European Journal of Operational Research, Elsevier, vol. 182(1), pages 282-299, October.
    8. Zhai, Qingqing & Yang, Jun & Zhao, Yu, 2014. "Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 66-82.
    9. Dui, Hongyan & Zhang, Chi & Tian, Tianzi & Wu, Shaomin, 2022. "Different costs-informed component preventive maintenance with system lifetime changes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    10. Zaitseva, Elena & Levashenko, Vitaly & Sedlacek, Peter & Kvassay, Miroslav & Rabcan, Jan, 2021. "Logical differential calculus for calculation of Birnbaum importance of non-coherent system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Dutuit, Yves & Rauzy, Antoine, 2015. "On the extension of Importance Measures to complex components," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 161-168.
    12. Dui, Hongyan & Wu, Shaomin & Zhao, Jiangbin, 2021. "Some extensions of the component maintenance priority," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    13. Jorge Navarro, 2016. "Stochastic comparisons of generalized mixtures and coherent systems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 150-169, March.
    14. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2017. "AC power flow importance measures considering multi-element failures," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 89-97.
    15. Di Maio, Francesco & Baronchelli, Samuele & Zio, Enrico, 2014. "Hierarchical differential evolution for minimal cut sets identification: Application to nuclear safety systems," European Journal of Operational Research, Elsevier, vol. 238(2), pages 645-652.
    16. Do, Phuc & Bérenguer, Christophe, 2020. "Conditional reliability-based importance measures," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Daneshkhah, Alireza & Bedford, Tim, 2013. "Probabilistic sensitivity analysis of system availability using Gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 82-93.
    18. Tyrväinen, T., 2013. "Risk importance measures in the dynamic flowgraph methodology," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 35-50.
    19. Borgonovo, Emanuele & Aliee, Hananeh & Glaß, Michael & Teich, Jürgen, 2016. "A new time-independent reliability importance measure," European Journal of Operational Research, Elsevier, vol. 254(2), pages 427-442.
    20. Toppila, Antti & Salo, Ahti, 2017. "Selection of risk reduction portfolios under interval-valued probabilities," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 69-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:204:y:2010:i:3:p:513-521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.