IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v212y2021ics0951832021001836.html
   My bibliography  Save this article

Availability and Comparison of Four Retrial Systems with Imperfect Coverage and General Repair Times

Author

Listed:
  • Wu, Chia-Huang
  • Yen, Tseng-Chang
  • Wang, Kuo-Hsiung

Abstract

In various industries, system availability assessment has been extensively investigated. Particularly, a stable power supply system is essential and critical in many service systems such as communication networks, mass transit systems, data storage centers and product manufacturing processes, etc. When an unreliable power supply unit fails, the repair services may be unavailable and a random period of (retrial) time for contact and confirmation is needed. Thus, this paper compares four retrial power supply systems with general repair time, warm standby units, and imperfect coverage possibility. That is, the power generation equipment is assumed unreliable and may fail anytime. The steady-state probabilities and the associated availabilities of four retrial systems are derived explicitly. A comparative analysis of the availability and the cost-benefit ratio among four retrial systems is presented. The efficiencies of four considered retrial systems are sorted and the optimal retrial system is provided. Based on the calculated numerical results, the management insights for practical applications are also proposed for decision making.

Suggested Citation

  • Wu, Chia-Huang & Yen, Tseng-Chang & Wang, Kuo-Hsiung, 2021. "Availability and Comparison of Four Retrial Systems with Imperfect Coverage and General Repair Times," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001836
    DOI: 10.1016/j.ress.2021.107642
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021001836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yen, Tseng-Chang & Wang, Kuo-Hsiung, 2020. "Cost benefit analysis of four retrial systems with warm standby units and imperfect coverage," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    2. Kuo, Ching-Chang & Ke, Jau-Chuan, 2016. "Comparative analysis of standby systems with unreliable server and switching failure," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 74-82.
    3. Kumar, Pankaj & Jain, Madhu, 2020. "Reliability analysis of a multi-component machining system with service interruption, imperfect coverage, and reboot," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    4. Gao, Shan & Wang, Jinting, 2021. "Reliability and availability analysis of a retrial system with mixed standbys and an unreliable repair facility," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    5. Anatoly Nazarov & János Sztrik & Anna Kvach & Tamás Bérczes, 2019. "Asymptotic analysis of finite-source M/M/1 retrial queueing system with collisions and server subject to breakdowns and repairs," Annals of Operations Research, Springer, vol. 277(2), pages 213-229, June.
    6. Jeongsim Kim & Bara Kim, 2016. "A survey of retrial queueing systems," Annals of Operations Research, Springer, vol. 247(1), pages 3-36, December.
    7. Zheng, Junjun & Okamura, Hiroyuki & Pang, Taoming & Dohi, Tadashi, 2021. "Availability importance measures of components in smart electric power grid systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    8. Wang, Naichao & Hu, Jiawen & Ma, Lin & Xiao, Boping & Liao, Haitao, 2020. "Availability Analysis and Preventive Maintenance Planning for Systems with General Time Distributions," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    9. Anatoly Nazarov & János Sztrik & Anna Kvach & Ádám Tóth, 2020. "Asymptotic sojourn time analysis of finite-source M/M/1 retrial queueing system with collisions and server subject to breakdowns and repairs," Annals of Operations Research, Springer, vol. 288(1), pages 417-434, May.
    10. Jagtap, Hanumant P. & Bewoor, Anand K. & Kumar, Ravinder & Ahmadi, Mohammad Hossein & Chen, Lingen, 2020. "Performance analysis and availability optimization to improve maintenance schedule for the turbo-generator subsystem of a thermal power plant using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    11. Yang, Dong-Yuh & Wu, Chia-Huang, 2021. "Evaluation of the availability and reliability of a standby repairable system incorporating imperfect switchovers and working breakdowns," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    12. Yang, Dong-Yuh & Tsao, Chih-Lung, 2019. "Reliability and availability analysis of standby systems with working vacations and retrial of failed components," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 46-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jain, Madhu & Kumar, Pankaj & Singh, Mayank & Gupta, Ritu, 2024. "Cost optimization and reliability analysis of fault tolerant system with service interruption and reboot," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Li, Mingjia & Hu, Linmin & Peng, Rui & Bai, Zhuoxin, 2021. "Reliability modeling for repairable circular consecutive-k-out-of-n: F systems with retrial feature," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Zhang, Changzhen & Yang, Jun & Li, Mingjia & Wang, Ning, 2024. "Reliability analysis of a two-dimensional linear consecutive-(r,s)-out-of-(m,n): F repairable system," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Jia, Xiang & Guo, Bo, 2022. "Reliability analysis for complex system with multi-source data integration and multi-level data transmission," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Zhou, Siwei & Ye, Luyao & Xiong, Shengwu & Xiang, Jianwen, 2022. "Reliability analysis of dynamic fault trees with Priority-AND gates based on irrelevance coverage model," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    6. Wang, Yan & Hu, Linmin & Yang, Li & Li, Jing, 2022. "Reliability modeling and analysis for linear consecutive-k-out-of-n: F retrial systems with two maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Kuo-Hsiung & Wu, Chia-Huang & Yen, Tseng-Chang, 2022. "Comparative cost-benefit analysis of four retrial systems with preventive maintenance and unreliable service station," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Jain, Madhu & Kumar, Pankaj & Singh, Mayank & Gupta, Ritu, 2024. "Cost optimization and reliability analysis of fault tolerant system with service interruption and reboot," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    3. Gao, Shan & Wang, Jinting & Zhang, Jie, 2023. "Reliability analysis of a redundant series system with common cause failures and delayed vacation," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    4. Wang, Yan & Hu, Linmin & Yang, Li & Li, Jing, 2022. "Reliability modeling and analysis for linear consecutive-k-out-of-n: F retrial systems with two maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Li, Mingjia & Hu, Linmin & Peng, Rui & Bai, Zhuoxin, 2021. "Reliability modeling for repairable circular consecutive-k-out-of-n: F systems with retrial feature," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Yang, Dong-Yuh & Tsao, Chih-Lung, 2019. "Reliability and availability analysis of standby systems with working vacations and retrial of failed components," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 46-55.
    7. Anatoly Nazarov & János Sztrik & Anna Kvach & Ádám Tóth, 2022. "Asymptotic Analysis of Finite-Source M/GI/1 Retrial Queueing Systems with Collisions and Server Subject to Breakdowns and Repairs," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1503-1518, September.
    8. Gao, Shan, 2023. "Reliability analysis and optimization for a redundant system with dependent failures and variable repair rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 637-659.
    9. Yu, Xiaoyun & Hu, Linmin & Ma, Mengrao, 2023. "Reliability measures of discrete time k-out-of-n: G retrial systems based on Bernoulli shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Yang, Dong-Yuh & Wu, Chia-Huang, 2021. "Evaluation of the availability and reliability of a standby repairable system incorporating imperfect switchovers and working breakdowns," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. de Araujo, Matheus Soares & da Silva, Leandro Dias & Sobrinho, Ã lvaro & Cunha, Paulo & Montecchi, Leonardo, 2022. "Reliability analysis of multi-parameter monitoring systems for Intensive Care Units," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Rokhforoz, Pegah & Gjorgiev, Blazhe & Sansavini, Giovanni & Fink, Olga, 2021. "Multi-agent maintenance scheduling based on the coordination between central operator and decentralized producers in an electricity market," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    13. Zhou, Siwei & Ye, Luyao & Xiong, Shengwu & Xiang, Jianwen, 2022. "Reliability analysis of dynamic fault trees with Priority-AND gates based on irrelevance coverage model," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    14. V., Saravanan & V., Poongothai & P., Godhandaraman, 2023. "Performance analysis of a multi server retrial queueing system with unreliable server, discouragement and vacation model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 204-226.
    15. Cheng, Dawei & Lu, Zhong & Zhou, Jia & Liang, Xihui, 2023. "An optimizing maintenance policy for airborne redundant systems operating with faults by using Markov process and NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    16. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Nitin Panwar & Sanjeev Kumar, 2022. "Mathematical modelling and performance analysis of screening unit in paper plant," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2751-2763, October.
    18. Li, Mingjia & Hu, Linmin & Wu, Shaomin & Zhao, Bing & Wang, Yan, 2023. "Reliability assessment for consecutive-k-out-of-n: F retrial systems under Poisson shocks," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    19. Jakov Batelić & Karlo Griparić & Dario Matika, 2021. "Impact of Remediation-Based Maintenance on the Reliability of a Coal-Fired Power Plant Using Generalized Stochastic Petri Nets," Energies, MDPI, vol. 14(18), pages 1-14, September.
    20. Bin Liu & Jie Min & Yiqiang Q. Zhao, 2023. "Refined tail asymptotic properties for the $$M^X/G/1$$ M X / G / 1 retrial queue," Queueing Systems: Theory and Applications, Springer, vol. 104(1), pages 65-105, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.