IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i3d10.1007_s11009-021-09870-w.html
   My bibliography  Save this article

Asymptotic Analysis of Finite-Source M/GI/1 Retrial Queueing Systems with Collisions and Server Subject to Breakdowns and Repairs

Author

Listed:
  • Anatoly Nazarov

    (National Research Tomsk State University)

  • János Sztrik

    (University of Debrecen, Doctoral School of Informatics)

  • Anna Kvach

    (National Research Tomsk State University)

  • Ádám Tóth

    (University of Debrecen, Doctoral School of Informatics)

Abstract

This paper deals with a retrial queuing system with a finite number of sources and collision of the customers, where the server is subject to random breakdowns and repairs depending on whether it is idle or busy. A significant difference of this system from the previous ones is that the service time is assumed to follow a general distribution while the server’s lifetime and repair time is supposed to be exponentially distributed. The considered system is investigated by the method of asymptotic analysis under the condition of an unlimited growing number of sources. As a result, it is proved that the limiting probability distribution of the number of customers in the system follows a Gaussian distribution with given parameters. The Gaussian approximation and the estimations obtained by stochastic simulations of the prelimit probability distribution are compared to each other and measured by the Kolmogorov distance. Several examples are treated and figures show the accuracy and area of applicability of the proposed asymptotic method.

Suggested Citation

  • Anatoly Nazarov & János Sztrik & Anna Kvach & Ádám Tóth, 2022. "Asymptotic Analysis of Finite-Source M/GI/1 Retrial Queueing Systems with Collisions and Server Subject to Breakdowns and Repairs," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1503-1518, September.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09870-w
    DOI: 10.1007/s11009-021-09870-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-021-09870-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-021-09870-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonio Gómez-Corral & Tuan Phung-Duc, 2016. "Retrial queues and related models," Annals of Operations Research, Springer, vol. 247(1), pages 1-2, December.
    2. Lyes Ikhlef & Ouiza Lekadir & Djamil Aïssani, 2016. "MRSPN analysis of Semi-Markovian finite source retrial queues," Annals of Operations Research, Springer, vol. 247(1), pages 141-167, December.
    3. Anatoly Nazarov & János Sztrik & Anna Kvach & Tamás Bérczes, 2019. "Asymptotic analysis of finite-source M/M/1 retrial queueing system with collisions and server subject to breakdowns and repairs," Annals of Operations Research, Springer, vol. 277(2), pages 213-229, June.
    4. Velika I. Dragieva, 2014. "Number Of Retrials In A Finite Source Retrial Queue With Unreliable Server," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(02), pages 1-23.
    5. Falin, G. I. & Artalejo, J. R., 1998. "A finite source retrial queue," European Journal of Operational Research, Elsevier, vol. 108(2), pages 409-424, July.
    6. Jeongsim Kim & Bara Kim, 2016. "A survey of retrial queueing systems," Annals of Operations Research, Springer, vol. 247(1), pages 3-36, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatoly Nazarov & János Sztrik & Anna Kvach & Ádám Tóth, 2020. "Asymptotic sojourn time analysis of finite-source M/M/1 retrial queueing system with collisions and server subject to breakdowns and repairs," Annals of Operations Research, Springer, vol. 288(1), pages 417-434, May.
    2. Anatoly Nazarov & János Sztrik & Anna Kvach & Tamás Bérczes, 2019. "Asymptotic analysis of finite-source M/M/1 retrial queueing system with collisions and server subject to breakdowns and repairs," Annals of Operations Research, Springer, vol. 277(2), pages 213-229, June.
    3. Velika I. Dragieva & Tuan Phung-Duc, 2020. "A finite-source M/G/1 retrial queue with outgoing calls," Annals of Operations Research, Springer, vol. 293(1), pages 101-121, October.
    4. Wang, Kuo-Hsiung & Wu, Chia-Huang & Yen, Tseng-Chang, 2022. "Comparative cost-benefit analysis of four retrial systems with preventive maintenance and unreliable service station," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    5. Wu, Chia-Huang & Yen, Tseng-Chang & Wang, Kuo-Hsiung, 2021. "Availability and Comparison of Four Retrial Systems with Imperfect Coverage and General Repair Times," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    6. Wei Xu & Liwei Liu & Linhong Li & Zhen Wang & Sabine Wittevrongel, 2023. "Analysis of a Collision-Affected M/GI/1/ /N Retrial Queuing System Considering Negative Customers and Transmission Errors," Mathematics, MDPI, vol. 11(16), pages 1-23, August.
    7. Haque, Lani & Armstrong, Michael J., 2007. "A survey of the machine interference problem," European Journal of Operational Research, Elsevier, vol. 179(2), pages 469-482, June.
    8. Bin Liu & Jie Min & Yiqiang Q. Zhao, 2023. "Refined tail asymptotic properties for the $$M^X/G/1$$ M X / G / 1 retrial queue," Queueing Systems: Theory and Applications, Springer, vol. 104(1), pages 65-105, June.
    9. Yang, Dong-Yuh & Tsao, Chih-Lung, 2019. "Reliability and availability analysis of standby systems with working vacations and retrial of failed components," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 46-55.
    10. Faruk Akın & E. Lerzan Örmeci, 2022. "Optimal control of a loss system with feedback," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 381-383, April.
    11. Chiu, Singa Wang & Chen, Hui-Cun & Wu, Hua-Yao & Chiu, Yuan-Shyi Peter, 2020. "A hybrid finite production rate system featuring random breakdown and rework," Operations Research Perspectives, Elsevier, vol. 7(C).
    12. Bin Liu & Yiqiang Q. Zhao, 2020. "Tail asymptotics for the $$M_1,M_2/G_1,G_2/1$$ M 1 , M 2 / G 1 , G 2 / 1 retrial queue with non-preemptive priority," Queueing Systems: Theory and Applications, Springer, vol. 96(1), pages 169-199, October.
    13. Mridula Jain & Anamika Jain, 2022. "Genetic algorithm in retrial queueing system with server breakdown and caller intolerance with voluntary service," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 582-598, April.
    14. B. Krishna Kumar & R. Sankar & R. Navaneetha Krishnan & R. Rukmani, 2023. "Multiserver call center retrial queue under Bernoulli vacation schedule with two-way communication and orbital search," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 84(1), pages 23-51, September.
    15. Se Won Lee & Bara Kim & Jeongsim Kim, 2022. "Analysis of the waiting time distribution in M/G/1 retrial queues with two way communication," Annals of Operations Research, Springer, vol. 310(2), pages 505-518, March.
    16. Lamia Lakaour & Djamil Aïssani & Karima Adel-Aissanou & Kamel Barkaoui, 2019. "M/M/1 Retrial Queue with Collisions and Transmission Errors," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1395-1406, December.
    17. I. Padmavathi & A. Shophia Lawrence & B. Sivakumar, 2016. "A finite-source inventory system with postponed demands and modified M vacation policy," OPSEARCH, Springer;Operational Research Society of India, vol. 53(1), pages 41-62, March.
    18. Alexandra Borodina & Vladimir Mazalov, 2023. "On the Equilibrium in a Queuing System with Retrials and Strategic Arrivals," Mathematics, MDPI, vol. 11(16), pages 1-15, August.
    19. Lyes Ikhlef & Ouiza Lekadir & Djamil Aïssani, 2016. "MRSPN analysis of Semi-Markovian finite source retrial queues," Annals of Operations Research, Springer, vol. 247(1), pages 141-167, December.
    20. Dieter Fiems & Tuan Phung-Duc, 2019. "Light-traffic analysis of random access systems without collisions," Annals of Operations Research, Springer, vol. 277(2), pages 311-327, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:3:d:10.1007_s11009-021-09870-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.