IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v210y2021ics0951832021000715.html
   My bibliography  Save this article

Optimal design of hybrid accelerated test based on the Inverse Gaussian process model

Author

Listed:
  • Ma, Zhonghai
  • Liao, Haitao
  • Ji, Hui
  • Wang, Shaoping
  • Yin, Fanglong
  • Nie, Songlin

Abstract

Accelerated life testing (ALT) and accelerated degradation testing (ADT) are two widely used accelerated testing (AT) methods for reliability evaluation of highly reliable products. However, in many cases, it is difficult to meet the estimation requirements only using ALT or ADT because of the nature of data and the test constraints. Since both ALT and ADT data provide useful reliability information, it would be quite valuable to use both of them for reliability estimation. In this paper, an optimal testing plan is proposed for the first time for such a hybrid AT under several experimental design constraints. An Inverse Gaussian (IG) process and the corresponding lifetime distribution are used to model the degradation process and the lifetime of the product, respectively. The strategy of allocating the test units to ALT and ADT and determining the data collection strategy in the experiment are presented. The objective is to maximize the estimation precision of the p-quantile of the product's lifetime under the normal use condition. A study on the stress relaxation of a type of electrical connector is conducted to illustrate the value of the proposed method in practice.

Suggested Citation

  • Ma, Zhonghai & Liao, Haitao & Ji, Hui & Wang, Shaoping & Yin, Fanglong & Nie, Songlin, 2021. "Optimal design of hybrid accelerated test based on the Inverse Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:reensy:v:210:y:2021:i:c:s0951832021000715
    DOI: 10.1016/j.ress.2021.107509
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021000715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107509?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Weiwen & Li, Yan-Feng & Yang, Yuan-Jian & Huang, Hong-Zhong & Zuo, Ming J., 2014. "Inverse Gaussian process models for degradation analysis: A Bayesian perspective," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 175-189.
    2. Liu, Di & Wang, Shaoping & Zhang, Chao & Tomovic, Mileta, 2018. "Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 25-38.
    3. Wang, Han & Zhao, Yu & Ma, Xiaobing & Wang, Hongyu, 2017. "Optimal design of constant-stress accelerated degradation tests using the M-optimality criterion," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 45-54.
    4. Ma, Zhonghai & Wang, Shaoping & Ruiz, Cesar & Zhang, Chao & Liao, Haitao & Pohl, Edward, 2020. "Reliability estimation from two types of accelerated testing data considering measurement error," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Soumya Roy & Chiranjit Mukhopadhyay, 2016. "Bayesian D -optimal Accelerated Life Test plans for series systems with competing exponential causes of failure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(8), pages 1477-1493, June.
    6. Wang, Huan & Wang, Guan-jun & Duan, Feng-jun, 2016. "Planning of step-stress accelerated degradation test based on the inverse Gaussian process," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 97-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhe & Li, Xiaoyang & Kang, Rui, 2022. "Uncertain differential equation based accelerated degradation modeling," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Yan, Weian & Xu, Xiaofan & Bigaud, David & Cao, Wenqin, 2023. "Optimal design of step-stress accelerated degradation tests based on the Tweedie exponential dispersion process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Zheng, Bokai & Chen, Cen & Lin, Yigang & Hu, Yifan & Ye, Xuerong & Zhai, Guofu & Zio, Enrico, 2022. "Optimal design of step-stress accelerated degradation test oriented by nonlinear and distributed degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Li, Yang & Gao, Haifeng & Chen, Hongtian & Liu, Chun & Yang, Zhe & Zio, Enrico, 2024. "Accelerated degradation testing for lifetime analysis considering random effects and the influence of stress and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    5. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Ye, Xuerong & Hu, Yifan & Zheng, Bokai & Chen, Cen & Zhai, Guofu, 2022. "A new class of multi-stress acceleration models with interaction effects and its extension to accelerated degradation modelling," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Chen, Xingyu & Yang, Qingyu & Wu, Xin, 2022. "Nonlinear degradation model and reliability analysis by integrating image covariate," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Di & Wang, Shaoping, 2021. "An artificial neural network supported stochastic process for degradation modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    2. Liu, Di & Wang, Shaoping & Cui, Xiaoyu, 2022. "An artificial neural network supported Wiener process based reliability estimation method considering individual difference and measurement error," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    3. Liu, Di & Wang, Shaoping, 2021. "Reliability estimation from lifetime testing data and degradation testing data with measurement error based on evidential variable and Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2019. "Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 261-270.
    6. Liu, Di & Wang, Shaoping, 2020. "A degradation modeling and reliability estimation method based on Wiener process and evidential variable," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    7. Cheng, Yao & Liao, Haitao & Huang, Zhiyi, 2021. "Optimal degradation-based hybrid double-stage acceptance sampling plan for a heterogeneous product," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    8. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    9. Yan, Weian & Xu, Xiaofan & Bigaud, David & Cao, Wenqin, 2023. "Optimal design of step-stress accelerated degradation tests based on the Tweedie exponential dispersion process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Liu, Di & Wang, Shaoping & Zhang, Chao, 2022. "Reliability estimation from two types of accelerated testing data based on an artificial neural network supported Wiener process," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    11. Chen, Chuanhai & Li, Bowen & Guo, Jinyan & Liu, Zhifeng & Qi, Baobao & Hua, Chunlei, 2022. "Bearing life prediction method based on the improved FIDES reliability model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    12. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    13. Xudan Chen & Guoxun Ji & Xinli Sun & Zhen Li, 2019. "Inverse Gaussian–based model with measurement errors for degradation analysis," Journal of Risk and Reliability, , vol. 233(6), pages 1086-1098, December.
    14. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2018. "Nonlinear step-stress accelerated degradation modelling considering three sources of variability," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 207-215.
    15. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Fang, Xiaolei & Cai, Xiao & Yan, Tao, 2021. "Remaining useful life prediction based on a multi-sensor data fusion model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    16. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Wang, Huan & Wang, Guan-jun & Duan, Feng-jun, 2016. "Planning of step-stress accelerated degradation test based on the inverse Gaussian process," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 97-105.
    18. Sun, Bo & Fan, Xuejun & Ye, Huaiyu & Fan, Jiajie & Qian, Cheng & van Driel, Williem & Zhang, Guoqi, 2017. "A novel lifetime prediction for integrated LED lamps by electronic-thermal simulation," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 14-21.
    19. Bae, Suk Joo & Yuan, Tao & Ning, Shuluo & Kuo, Way, 2015. "A Bayesian approach to modeling two-phase degradation using change-point regression," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 66-74.
    20. Xiang, Shihu & Yang, Jun, 2023. "A novel adaptive deployment method for the single-target tracking of mobile wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:210:y:2021:i:c:s0951832021000715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.