IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v225y2022ics0951832022002472.html
   My bibliography  Save this article

Nonlinear degradation model and reliability analysis by integrating image covariate

Author

Listed:
  • Chen, Xingyu
  • Yang, Qingyu
  • Wu, Xin

Abstract

Degradation-based reliability analysis is an essential method for reliability prediction and prognosis of critical systems. Recently, with the advances of information technology, high-dimensional data such as images are available to improve system modeling and analysis. In this research, we propose a new nonlinear degradation model that integrates material microstructure image covariates. Based on the proposed model, product reliability can be precisely predicted and the failure time distribution is calculated. A maximum likelihood estimation method and an expectation-maximization method are developed to estimate the model parameters. Simulation studies are conducted to exam the effectiveness of the developed model and the model parameter estimation method. In the case study, the developed methodology is applied to a real-world problem of dual-phase advanced high strength steel (AHSS), which is now widely used in the automotive and aerospace industries. The results show that the proposed model can effectively model the nonlinear degradation trend with material image covariates, and the model greatly outperforms multiple existing methods.

Suggested Citation

  • Chen, Xingyu & Yang, Qingyu & Wu, Xin, 2022. "Nonlinear degradation model and reliability analysis by integrating image covariate," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002472
    DOI: 10.1016/j.ress.2022.108602
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022002472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108602?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Bokai & Chen, Cen & Lin, Yigang & Hu, Yifan & Ye, Xuerong & Zhai, Guofu & Zio, Enrico, 2022. "Optimal design of step-stress accelerated degradation test oriented by nonlinear and distributed degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Ma, Zhonghai & Liao, Haitao & Ji, Hui & Wang, Shaoping & Yin, Fanglong & Nie, Songlin, 2021. "Optimal design of hybrid accelerated test based on the Inverse Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    3. Nailong Zhang & Qingyu Yang, 2016. "A random effect autologistic regression model with application to the characterization of multiple microstructure samples," IISE Transactions, Taylor & Francis Journals, vol. 48(1), pages 34-42, January.
    4. Cao, Yudong & Ding, Yifei & Jia, Minping & Tian, Rushuai, 2021. "A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Liu, Yao & Wang, Yashun & Fan, Zhengwei & Bai, Guanghan & Chen, Xun, 2021. "Reliability modeling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2020. "Application of adaptive surrogate models in time-variant fatigue reliability assessment of welded joints with surface cracks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    7. Liu, Di & Wang, Shaoping, 2021. "An artificial neural network supported stochastic process for degradation modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    8. Jiang, R. & Jardine, A.K.S., 2008. "Health state evaluation of an item: A general framework and graphical representation," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 89-99.
    9. Wujun Si & Qingyu Yang & Xin Wu, 2016. "A physical–statistical model of overload retardation for crack propagation and application in reliability estimation," IISE Transactions, Taylor & Francis Journals, vol. 48(4), pages 347-358, April.
    10. Dong, Qinglai & Cui, Lirong, 2019. "A study on stochastic degradation process models under different types of failure Thresholds," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 202-212.
    11. Syamsundar, A. & Naikan, V.N.A. & Wu, Shaomin, 2021. "Extended Arithmetic Reduction of Age Models for the Failure Process of a Repairable System," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    12. Huang, Jianlin & Golubović, Dušan S & Koh, Sau & Yang, Daoguo & Li, Xiupeng & Fan, Xuejun & Zhang, G.Q., 2016. "Lumen degradation modeling of white-light LEDs in step stress accelerated degradation test," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 152-159.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jian & Gao, Shibin & Yu, Long & Ma, Chaoqun & Zhang, Dongkai & Kou, Lei, 2023. "A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Xuerong & Hu, Yifan & Zheng, Bokai & Chen, Cen & Zhai, Guofu, 2022. "A new class of multi-stress acceleration models with interaction effects and its extension to accelerated degradation modelling," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Chen, Chuanhai & Li, Bowen & Guo, Jinyan & Liu, Zhifeng & Qi, Baobao & Hua, Chunlei, 2022. "Bearing life prediction method based on the improved FIDES reliability model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    3. Liu, Zhe & Li, Xiaoyang & Kang, Rui, 2022. "Uncertain differential equation based accelerated degradation modeling," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Yan, Weian & Xu, Xiaofan & Bigaud, David & Cao, Wenqin, 2023. "Optimal design of step-stress accelerated degradation tests based on the Tweedie exponential dispersion process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Chen, Wen-Bin & Li, Xiao-Yang & Wu, Ji-Peng & Kang, Rui, 2024. "Uncertain random accelerated degradation modelling and statistical analysis with aleatory and epistemic uncertainties from multiple dimensions," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Zheng, Bokai & Chen, Cen & Lin, Yigang & Hu, Yifan & Ye, Xuerong & Zhai, Guofu & Zio, Enrico, 2022. "Optimal design of step-stress accelerated degradation test oriented by nonlinear and distributed degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Louzada, Francisco & Tomazella, Vera L.D. & Gonzatto, Oilson A. & Bochio, Gustavo & Milani, Eder A. & Ferreira, Paulo H. & Ramos, Pedro L., 2022. "Reliability assessment of repairable systems with series–parallel structure subjected to hierarchical competing risks under minimal repair regime," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Xu, Zhiqiang & Zhang, Yujie & Miao, Qiang, 2024. "An attention-based multi-scale temporal convolutional network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    9. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Yi Lyu & Qichen Zhang & Zhenfei Wen & Aiguo Chen, 2022. "Remaining Useful Life Prediction Based on Multi-Representation Domain Adaptation," Mathematics, MDPI, vol. 10(24), pages 1-18, December.
    11. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    12. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Chang, Yuanhong & Li, Fudong & Chen, Jinglong & Liu, Yulang & Li, Zipeng, 2022. "Efficient temporal flow Transformer accompanied with multi-head probsparse self-attention mechanism for remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. Liu, Di & Wang, Shaoping & Cui, Xiaoyu, 2022. "An artificial neural network supported Wiener process based reliability estimation method considering individual difference and measurement error," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    15. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    16. Fang, Chen & Cui, Lirong, 2021. "Balanced Systems by Considering Multi-state Competing Risks Under Degradation Processes," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    17. Qiu, Qingan & Cui, Lirong, 2019. "Gamma process based optimal mission abort policy," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    18. Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    19. Fan, Linchuan & Chai, Yi & Chen, Xiaolong, 2022. "Trend attention fully convolutional network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    20. Bai, Ruxue & Meng, Zong & Xu, Quansheng & Fan, Fengjie, 2023. "Fractional Fourier and time domain recurrence plot fusion combining convolutional neural network for bearing fault diagnosis under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.