IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i8p1477-1493.html
   My bibliography  Save this article

Bayesian D -optimal Accelerated Life Test plans for series systems with competing exponential causes of failure

Author

Listed:
  • Soumya Roy
  • Chiranjit Mukhopadhyay

Abstract

This paper provides methods of obtaining Bayesian D -optimal Accelerated Life Test (ALT) plans for series systems with independent exponential component lives under the Type-I censoring scheme. Two different Bayesian D -optimality design criteria are considered. For both the criteria, first optimal designs for a given number of experimental points are found by solving a finite-dimensional constrained optimization problem. Next, the global optimality of such an ALT plan is ensured by applying the General Equivalence Theorem. A detailed sensitivity analysis is also carried out to investigate the effect of different planning inputs on the resulting optimal ALT plans. Furthermore, these Bayesian optimal plans are also compared with the corresponding (frequentist) locally D -optimal ALT plans.

Suggested Citation

  • Soumya Roy & Chiranjit Mukhopadhyay, 2016. "Bayesian D -optimal Accelerated Life Test plans for series systems with competing exponential causes of failure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(8), pages 1477-1493, June.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:8:p:1477-1493
    DOI: 10.1080/02664763.2015.1106449
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1106449
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1106449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Firth & J. P. Hinde, 1997. "On Bayesian D‐optimum Design Criteria and the Equivalence Theorem in Non‐linear Models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 793-797.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Zhonghai & Liao, Haitao & Ji, Hui & Wang, Shaoping & Yin, Fanglong & Nie, Songlin, 2021. "Optimal design of hybrid accelerated test based on the Inverse Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulrike Graßhoff & Heinz Holling & Rainer Schwabe, 2012. "Optimal Designs for the Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 710-723, October.
    2. Belmiro P. M. Duarte & Guillaume Sagnol, 2020. "Approximate and exact optimal designs for $$2^k$$ 2 k factorial experiments for generalized linear models via second order cone programming," Statistical Papers, Springer, vol. 61(6), pages 2737-2767, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:8:p:1477-1493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.