Local reliability based sensitivity analysis with the moving particles method
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2020.107269
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
- Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
- O. H. Galal, 2013. "A Proposed Stochastic Finite Difference Approach Based on Homogenous Chaos Expansion," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-9, July.
- Song, Shufang & Lu, Zhenzhou & Qiao, Hongwei, 2009. "Subset simulation for structural reliability sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 658-665.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiang Peng & Xiaoqing Xu & Jiquan Li & Shaofei Jiang, 2021. "A Sampling-Based Sensitivity Analysis Method Considering the Uncertainties of Input Variables and Their Distribution Parameters," Mathematics, MDPI, vol. 9(10), pages 1-18, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Keshtegar, Behrooz & Chakraborty, Subrata, 2018. "An efficient-robust structural reliability method by adaptive finite-step length based on Armijo line search," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 195-206.
- Marrel, Amandine & Chabridon, Vincent, 2021. "Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Xu, Jun & Kong, Fan, 2018. "A new unequal-weighted sampling method for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 94-102.
- Pan, Qiujing & Dias, Daniel, 2017. "Sliced inverse regression-based sparse polynomial chaos expansions for reliability analysis in high dimensions," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 484-493.
- Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji & Tsuchiya, Takeshi, 2018. "Global sensitivity analysis via multi-fidelity polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 175-190.
- Ehre, Max & Papaioannou, Iason & Straub, Daniel, 2020. "A framework for global reliability sensitivity analysis in the presence of multi-uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Dawei Zhang & Weilin Li & Xiaohua Wu & Tie Liu, 2018. "An Efficient Regional Sensitivity Analysis Method Based on Failure Probability with Hybrid Uncertainty," Energies, MDPI, vol. 11(7), pages 1-19, June.
- Yi Chen & Jing Dong & Hao Ni, 2021. "ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 559-594, May.
- Jian Wang & Xiang Gao & Zhili Sun, 2021. "A Multilevel Simulation Method for Time-Variant Reliability Analysis," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
- Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019.
"Uncertainty quantification and global sensitivity analysis for economic models,"
Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
- Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2017. "Uncertainty Quantification and Global Sensitivity Analysis for Economic Models," CER-ETH Economics working paper series 17/265, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
- Ahmed Kebaier & J'er^ome Lelong, 2015. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Papers 1510.03590, arXiv.org, revised Jul 2017.
- Stéphane Crépey & Noufel Frikha & Azar Louzi & Gilles Pagès, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04304985, HAL.
- Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
- Wang, Zequn & Wang, Pingfeng, 2015. "A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 346-356.
- Hideyuki Tanaka & Toshihiro Yamada, 2012. "Strong Convergence for Euler-Maruyama and Milstein Schemes with Asymptotic Method," Papers 1210.0670, arXiv.org, revised Nov 2013.
- Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
- Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
- Hoel Håkon & von Schwerin Erik & Szepessy Anders & Tempone Raúl, 2014. "Implementation and analysis of an adaptive multilevel Monte Carlo algorithm," Monte Carlo Methods and Applications, De Gruyter, vol. 20(1), pages 1-41, March.
- F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.
More about this item
Keywords
Local sensitivity analysis; Reliability; Multilevel method; Moving particles;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:207:y:2021:i:c:s0951832020307675. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.