IDEAS home Printed from https://ideas.repec.org/a/hin/jnljam/950469.html
   My bibliography  Save this article

A Proposed Stochastic Finite Difference Approach Based on Homogenous Chaos Expansion

Author

Listed:
  • O. H. Galal

Abstract

This paper proposes a stochastic finite difference approach, based on homogenous chaos expansion (SFDHC). The said approach can handle time dependent nonlinear as well as linear systems with deterministic or stochastic initial and boundary conditions. In this approach, included stochastic parameters are modeled as second-order stochastic processes and are expanded using Karhunen-Loève expansion, while the response function is approximated using homogenous chaos expansion. Galerkin projection is used in converting the original stochastic partial differential equation (PDE) into a set of coupled deterministic partial differential equations and then solved using finite difference method. Two well-known equations were used for efficiency validation of the method proposed. First one being the linear diffusion equation with stochastic parameter and the second is the nonlinear Burger's equation with stochastic parameter and stochastic initial and boundary conditions. In both of these examples, the probability distribution function of the response manifested close conformity to the results obtained from Monte Carlo simulation with optimized computational cost.

Suggested Citation

  • O. H. Galal, 2013. "A Proposed Stochastic Finite Difference Approach Based on Homogenous Chaos Expansion," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-9, July.
  • Handle: RePEc:hin:jnljam:950469
    DOI: 10.1155/2013/950469
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JAM/2013/950469.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JAM/2013/950469.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/950469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Proppe, Carsten, 2021. "Local reliability based sensitivity analysis with the moving particles method," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljam:950469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.