IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v201y2020ics0951832019309597.html
   My bibliography  Save this article

Dynamic Model-based Saddle-point Approximation for Reliability and Reliability-based Sensitivity Analysis

Author

Listed:
  • Zhou, Di
  • Pan, Ershun
  • Zhang, Xufang
  • Zhang, Yimin

Abstract

Dynamic reliability analysis must consider both dynamic performance and parametric randomness to evaluate system safety in operation. The saddle-point approximation method is utilized to establish the dynamic probability distribution for known or unknown types of random variables. The cumulative distribution function is used to establish the approximation dynamic reliability model based on a simplified formula with high accuracy. Dynamic reliability analysis is investigated to describe the system safety of the moving operation process. Additionally, dynamic reliability-based sensitivity is used to represent the influence of the parameters on the system's dynamic performance. The fixed-threshold model and load-strength interference model are considered to develop computational formulas of reliability analysis and the degree of effect of each parameter's fluctuation. Finally, the proposed method is evaluated and demonstrated by means of four numerical examples to analyse the system performance and the parameters’ effects. The crude Monte Carlo simulation is performed to provide benchmark results.

Suggested Citation

  • Zhou, Di & Pan, Ershun & Zhang, Xufang & Zhang, Yimin, 2020. "Dynamic Model-based Saddle-point Approximation for Reliability and Reliability-based Sensitivity Analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:reensy:v:201:y:2020:i:c:s0951832019309597
    DOI: 10.1016/j.ress.2020.106972
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019309597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Beiqing & Du, Xiaoping, 2008. "Probabilistic uncertainty analysis by mean-value first order Saddlepoint Approximation," Reliability Engineering and System Safety, Elsevier, vol. 93(2), pages 325-336.
    2. Wang, Zequn & Wang, Pingfeng, 2013. "A new approach for reliability analysis with time-variant performance characteristics," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 70-81.
    3. Wang, Zequn & Chen, Wei, 2016. "Time-variant reliability assessment through equivalent stochastic process transformation," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 166-175.
    4. Savage, Gordon J. & Zhang, Xufang & Son, Young Kap & Pandey, Mahesh D., 2016. "Reliability of mechanisms with periodic random modal frequencies using an extreme value-based approach," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 65-77.
    5. Rebello, Sinda & Yu, Hongyang & Ma, Lin, 2018. "An integrated approach for system functional reliability assessment using Dynamic Bayesian Network and Hidden Markov Model," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 124-135.
    6. Xie, Liyang & Wu, Ningxiang & Qian, Wenxue, 2016. "Time domain series system definition and gear set reliability modeling," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 97-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasilyev, A. & Andrews, J. & Dunnett, S.J. & Jackson, L.M., 2021. "Dynamic Reliability Assessment of PEM Fuel Cell Systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Torii, André Jacomel & Novotny, Antonio André, 2021. "A priori error estimates for local reliability-based sensitivity analysis with Monte Carlo Simulation," Reliability Engineering and System Safety, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Sourav & Tesfamariam, Solomon, 2024. "Reliability assessment of stochastic dynamical systems using physics informed neural network based PDEM," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Zhang, Kun & Chen, Ning & Zeng, Peng & Liu, Jian & Beer, Michael, 2022. "An efficient reliability analysis method for structures with hybrid time-dependent uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Li, Junxiang & Chen, Jianqiao, 2019. "Solving time-variant reliability-based design optimization by PSO-t-IRS: A methodology incorporating a particle swarm optimization algorithm and an enhanced instantaneous response surface," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Du, Weiqi & Luo, Yuanxin & Wang, Yongqin, 2019. "Time-variant reliability analysis using the parallel subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 250-257.
    5. Cheng, Kai & Lu, Zhenzhou, 2019. "Time-variant reliability analysis based on high dimensional model representation," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 310-319.
    6. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Wenxuan Wang & Hangshan Gao & Pengfei Wei & Changcong Zhou, 2017. "Extending first-passage method to reliability sensitivity analysis of motion mechanisms," Journal of Risk and Reliability, , vol. 231(5), pages 573-586, October.
    8. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Lyu, Dong & Si, Shubin, 2021. "Importance measure for K-out-of-n: G systems under dynamic random load considering strength degradation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Yuan, Xiukai & Lu, Zhenzhou, 2014. "Efficient approach for reliability-based optimization based on weighted importance sampling approach," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 107-114.
    11. Rong Yuan & Debiao Meng & Haiqing Li, 2016. "Multidisciplinary reliability design optimization using an enhanced saddlepoint approximation in the framework of sequential optimization and reliability analysis," Journal of Risk and Reliability, , vol. 230(6), pages 570-578, December.
    12. Zhang, Yang & Xu, Jun & Gardoni, Paolo, 2024. "A loading contribution degree analysis-based strategy for time-variant reliability analysis of structures under multiple loading stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    13. Wang, Zhonglai & Liu, Jing & Yu, Shui, 2020. "Time-variant reliability prediction for dynamic systems using partial information," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    14. XiaoFei, Lu & Min, Liu, 2014. "Hazard rate function in dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 50-60.
    15. Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2024. "A Subdomain uncertainty-guided Kriging method with optimized feasibility metric for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Jiang, Chen & Yan, Yifang & Wang, Dapeng & Qiu, Haobo & Gao, Liang, 2021. "Global and local Kriging limit state approximation for time-dependent reliability-based design optimization through wrong-classification probability," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    17. Rebello, Sinda & Yu, Hongyang & Ma, Lin, 2019. "An integrated approach for real-time hazard mitigation in complex industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 297-309.
    18. Yiwei Wang & Christian Gogu & Nicolas Binaud & Christian Bes & Raphael T Haftka & Nam-Ho Kim, 2018. "Predictive airframe maintenance strategies using model-based prognostics," Journal of Risk and Reliability, , vol. 232(6), pages 690-709, December.
    19. Federico Antonello & Piero Baraldi & Enrico Zio & Luigi Serio, 2022. "A novelty-based multi-objective evolutionary algorithm for identifying functional dependencies in complex technical infrastructures from alarm data," Environment Systems and Decisions, Springer, vol. 42(2), pages 177-188, June.
    20. Guo, Yongjin & Wang, Hongdong & Guo, Yu & Zhong, Mingjun & Li, Qing & Gao, Chao, 2022. "System operational reliability evaluation based on dynamic Bayesian network and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:201:y:2020:i:c:s0951832019309597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.