IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v232y2018i6p690-709.html
   My bibliography  Save this article

Predictive airframe maintenance strategies using model-based prognostics

Author

Listed:
  • Yiwei Wang
  • Christian Gogu
  • Nicolas Binaud
  • Christian Bes
  • Raphael T Haftka
  • Nam-Ho Kim

Abstract

Aircraft panel maintenance is typically based on scheduled inspections during which the panel damage size is compared to a repair threshold value, set to ensure a desirable reliability for the entire fleet. This policy is very conservative since it does not consider that damage size evolution can be very different on different panels, due to material variability and other factors. With the progress of sensor technology, data acquisition and storage techniques, and data processing algorithms, structural health monitoring systems are increasingly being considered by the aviation industry. Aiming at reducing the conservativeness of the current maintenance approaches, and, thus, at reducing the maintenance cost, we employ a model-based prognostics method developed in a previous work to predict the future damage growth of each aircraft panel. This allows deciding whether a given panel should be repaired considering the prediction of the future evolution of its damage, rather than its current health state. Two predictive maintenance strategies based on the developed prognostic model are proposed in this work and applied to fatigue damage propagation in fuselage panels. The parameters of the damage growth model are assumed to be unknown and the information on damage evolution is provided by noisy structural health monitoring measurements. We propose a numerical case study where the maintenance process of an entire fleet of aircraft is simulated, considering the variability of damage model parameters among the panel population as well as the uncertainty of pressure differential during the damage propagation process. The proposed predictive maintenance strategies are compared to other maintenance strategies using a cost model. The results show that the proposed predictive maintenance strategies significantly reduce the unnecessary repair interventions, and, thus, they lead to major cost savings.

Suggested Citation

  • Yiwei Wang & Christian Gogu & Nicolas Binaud & Christian Bes & Raphael T Haftka & Nam-Ho Kim, 2018. "Predictive airframe maintenance strategies using model-based prognostics," Journal of Risk and Reliability, , vol. 232(6), pages 690-709, December.
  • Handle: RePEc:sae:risrel:v:232:y:2018:i:6:p:690-709
    DOI: 10.1177/1748006X18757084
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X18757084
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X18757084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Wenbin & Hussin, B. & Jefferis, Tim, 2012. "A case study of condition based maintenance modelling based upon the oil analysis data of marine diesel engines using stochastic filtering," International Journal of Production Economics, Elsevier, vol. 136(1), pages 84-92.
    2. Huang, Beiqing & Du, Xiaoping, 2008. "Probabilistic uncertainty analysis by mean-value first order Saddlepoint Approximation," Reliability Engineering and System Safety, Elsevier, vol. 93(2), pages 325-336.
    3. Van Horenbeek, Adriaan & Pintelon, Liliane, 2013. "A dynamic predictive maintenance policy for complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 39-50.
    4. Curcurù, Giuseppe & Galante, Giacomo & Lombardo, Alberto, 2010. "A predictive maintenance policy with imperfect monitoring," Reliability Engineering and System Safety, Elsevier, vol. 95(9), pages 989-997.
    5. Deloux, E. & Castanier, B. & Bérenguer, C., 2009. "Predictive maintenance policy for a gradually deteriorating system subject to stress," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 418-431.
    6. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2015. "Multi-level predictive maintenance for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 83-94.
    7. Langeron, Y. & Grall, A. & Barros, A., 2015. "A modeling framework for deteriorating control system and predictive maintenance of actuators," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 22-36.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    2. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    3. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2017. "Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 249-261.
    4. Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.
    5. Fecarotti, Claudia & Andrews, John & Pesenti, Raffaele, 2021. "A mathematical programming model to select maintenance strategies in railway networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.
    7. Verbert, K. & De Schutter, B. & Babuška, R., 2017. "Timely condition-based maintenance planning for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 310-321.
    8. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    9. Shi, Yan & Lu, Zhenzhou & Huang, Hongzhong & Liu, Yu & Li, Yanfeng & Zio, Enrico & Zhou, Yicheng, 2022. "A new preventive maintenance strategy optimization model considering lifecycle safety," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    10. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    11. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    12. Pedersen, Tom Ivar & Vatn, Jørn, 2022. "Optimizing a condition-based maintenance policy by taking the preferences of a risk-averse decision maker into account," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    13. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    14. Dinh, Duc-Hanh & Do, Phuc & Iung, Benoit, 2022. "Multi-level opportunistic predictive maintenance for multi-component systems with economic dependence and assembly/disassembly impacts," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    15. Kim, Seokgoo & Choi, Joo-Ho & Kim, Nam Ho, 2022. "Inspection schedule for prognostics with uncertainty management," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    17. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    18. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    19. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    20. Do, Phuc & Vu, Hai Canh & Barros, Anne & Bérenguer, Christophe, 2015. "Maintenance grouping for multi-component systems with availability constraints and limited maintenance teams," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 56-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:232:y:2018:i:6:p:690-709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.