IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v182y2019icp250-257.html
   My bibliography  Save this article

Time-variant reliability analysis using the parallel subset simulation

Author

Listed:
  • Du, Weiqi
  • Luo, Yuanxin
  • Wang, Yongqin

Abstract

Time-variant reliability problems commonly occur in practical engineering applications due to deterioration in material properties, dynamic load and other causes. Since this kind of problem is usually a small probability event, subset simulation is more efficient than Monte Carlo simulation (MCS). However, subset simulation can only focus on a single limit function when propagating the conditional samples. Parallel subset simulation is applied to deal with time-dependent reliability analysis in this paper. A new method is proposed to construct a function called “principal variable†. The “principal variable†can represent limit state at each time instant to generate conditional samples. In addition, the update procedure of “principal variable†should be set at each simulation stage to keep the correlations between “principal variable†and nt limit states strong. Two numerical examples are used to demonstrate the effectiveness and accuracy of the developed parallel subset simulation for time-variant reliability analysis.

Suggested Citation

  • Du, Weiqi & Luo, Yuanxin & Wang, Yongqin, 2019. "Time-variant reliability analysis using the parallel subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 250-257.
  • Handle: RePEc:eee:reensy:v:182:y:2019:i:c:p:250-257
    DOI: 10.1016/j.ress.2018.10.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017314400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.10.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Zhili & Wang, Jian & Li, Rui & Tong, Cao, 2017. "LIF: A new Kriging based learning function and its application to structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 152-165.
    2. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2018. "Time-variant fatigue reliability assessment of welded joints based on the PHI2 and response surface methods," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 120-130.
    3. Wang, Zequn & Wang, Pingfeng, 2013. "A new approach for reliability analysis with time-variant performance characteristics," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 70-81.
    4. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.
    5. Wang, Zequn & Chen, Wei, 2016. "Time-variant reliability assessment through equivalent stochastic process transformation," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 166-175.
    6. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    7. Pan, Qiujing & Dias, Daniel, 2017. "Sliced inverse regression-based sparse polynomial chaos expansions for reliability analysis in high dimensions," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 484-493.
    8. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji & Tsuchiya, Takeshi, 2018. "Global sensitivity analysis via multi-fidelity polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 175-190.
    9. Xiao, Ning-Cong & Zuo, Ming J. & Zhou, Chengning, 2018. "A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 330-338.
    10. Wang, Zeyu & Shafieezadeh, Abdollah, 2019. "REAK: Reliability analysis through Error rate-based Adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 33-45.
    11. VanDerHorn, Eric & Mahadevan, Sankaran, 2018. "Bayesian model updating with summarized statistical and reliability data," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 12-24.
    12. Sonal, S.D. & Ammanagi, S & Kanjilal, O & Manohar, C.S., 2018. "Experimental estimation of time variant system reliability of vibrating structures based on subset simulation with Markov chain splitting," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 55-68.
    13. Wang, Zequn & Wang, Pingfeng, 2015. "A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 346-356.
    14. Peng, Weiwen & Huang, Hong-Zhong & Li, Yanfeng & Zuo, Ming J. & Xie, Min, 2013. "Life cycle reliability assessment of new products—A Bayesian model updating approach," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 109-119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Hongyuan & Zhang, Jiaxin & Dong, You & Frangopol, Dan M., 2024. "Probability-informed neural network-driven point-evolution kernel density estimation for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Song, Chaolin & Zhang, Chi & Shafieezadeh, Abdollah & Xiao, Rucheng, 2022. "Value of information analysis in non-stationary stochastic decision environments: A reliability-assisted POMDP approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Subramanian, Abhinav & Mahadevan, Sankaran, 2022. "Importance sampling for probabilistic prognosis of sector-wide flight separation safety," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Jian Wang & Xiang Gao & Zhili Sun, 2021. "A Multilevel Simulation Method for Time-Variant Reliability Analysis," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    5. Yuan, Xiukai & Zheng, Weiming & Zhao, Chaofan & Valdebenito, Marcos A. & Faes, Matthias G.R. & Dong, Yiwei, 2024. "Line sampling for time-variant failure probability estimation using an adaptive combination approach," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Jian Wang & Xiang Gao & Zhili Sun, 2021. "An Importance Sampling Framework for Time-Variant Reliability Analysis Involving Stochastic Processes," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    7. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2020. "Application of adaptive surrogate models in time-variant fatigue reliability assessment of welded joints with surface cracks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    8. Cao, Runan & Sun, Zhili & Wang, Jian & Guo, Fanyi, 2022. "A single-loop reliability analysis strategy for time-dependent problems with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Modibbo, Umar Muhammad & Arshad, Mohd. & Abdalghani, Omer & Ali, Irfan, 2021. "Optimization and estimation in system reliability allocation problem," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    10. Qian, Hua-Ming & Li, Yan-Feng & Huang, Hong-Zhong, 2021. "Time-variant system reliability analysis method for a small failure probability problem," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    11. Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2021. "A single-loop Kriging coupled with subset simulation for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    13. Wang, Zhonglai & Liu, Jing & Yu, Shui, 2020. "Time-variant reliability prediction for dynamic systems using partial information," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    14. Hu, Yingshi & Lu, Zhenzhou & Jiang, Xia & Wei, Ning & Zhou, Changcong, 2021. "Time-dependent structural system reliability analysis model and its efficiency solution," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Liu, Xintian & Yu, Xueguang & Tong, Jiachi & Wang, Xu & Wang, Xiaolan, 2021. "Mixed uncertainty analysis for dynamic reliability of mechanical structures considering residual strength," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    16. Bistouni, Fathollah & Jahanshahi, Mohsen, 2019. "Reliability-aware ring protection link selection in Ethernet ring mesh networks," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    2. Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    3. Teixeira, Rui & Martinez-Pastor, Beatriz & Nogal, Maria & O’Connor, Alan, 2021. "Reliability analysis using a multi-metamodel complement-basis approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Li, Junxiang & Chen, Jianqiao, 2019. "Solving time-variant reliability-based design optimization by PSO-t-IRS: A methodology incorporating a particle swarm optimization algorithm and an enhanced instantaneous response surface," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Jiang, Chen & Yan, Yifang & Wang, Dapeng & Qiu, Haobo & Gao, Liang, 2021. "Global and local Kriging limit state approximation for time-dependent reliability-based design optimization through wrong-classification probability," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    6. Zhang, Xufang & Wang, Lei & Sørensen, John Dalsgaard, 2019. "REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 440-454.
    7. Zhang, Jinhao & Xiao, Mi & Gao, Liang, 2019. "An active learning reliability method combining Kriging constructed with exploration and exploitation of failure region and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 90-102.
    8. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Yang, Seonghyeok & Jo, Hwisang & Lee, Kyungeun & Lee, Ikjin, 2022. "Expected system improvement (ESI): A new learning function for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    10. Qian, Hua-Ming & Li, Yan-Feng & Huang, Hong-Zhong, 2021. "Time-variant system reliability analysis method for a small failure probability problem," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    11. Wang, Jinsheng & Xu, Guoji & Yuan, Peng & Li, Yongle & Kareem, Ahsan, 2024. "An efficient and versatile Kriging-based active learning method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Wang, Zeyu & Shafieezadeh, Abdollah, 2020. "Real-time high-fidelity reliability updating with equality information using adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    13. Wang, Jinsheng & Xu, Guoji & Li, Yongle & Kareem, Ahsan, 2022. "AKSE: A novel adaptive Kriging method combining sampling region scheme and error-based stopping criterion for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    14. Cheng, Kai & Lu, Zhenzhou, 2019. "Time-variant reliability analysis based on high dimensional model representation," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 310-319.
    15. Yuan, Kai & Xiao, Ning-Cong & Wang, Zhonglai & Shang, Kun, 2020. "System reliability analysis by combining structure function and active learning kriging model," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    16. Xiongxiong You & Mengya Zhang & Diyin Tang & Zhanwen Niu, 2022. "An active learning method combining adaptive kriging and weighted penalty for structural reliability analysis," Journal of Risk and Reliability, , vol. 236(1), pages 160-172, February.
    17. Wang, Zeyu & Shafieezadeh, Abdollah, 2020. "On confidence intervals for failure probability estimates in Kriging-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    18. Zhou, Yicheng & Lu, Zhenzhou & Yun, Wanying, 2020. "Active sparse polynomial chaos expansion for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    19. Chengning Zhou & Ning-Cong Xiao & Ming J Zuo & Xiaoxu Huang, 2020. "AK-PDF: An active learning method combining kriging and probability density function for efficient reliability analysis," Journal of Risk and Reliability, , vol. 234(3), pages 536-549, June.
    20. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2020. "Application of adaptive surrogate models in time-variant fatigue reliability assessment of welded joints with surface cracks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:182:y:2019:i:c:p:250-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.