Industrial equipment reliability estimation: A Bayesian Weibull regression model with covariate selection
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2020.106891
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- María José García-Zattera & Alejandro Jara & Emmanuel Lesaffre & Guillermo Marshall, 2012. "Modeling of Multivariate Monotone Disease Processes in the Presence of Misclassification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 976-989, September.
- Elsayed, E.A. & Zhang, Hao, 2007. "Design of PH-based accelerated life testing plans under multiple-stress-type," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 286-292.
- Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
- Huda, Shamsul & Abdollahian, Mali & Mammadov, Musa & Yearwood, John & Ahmed, Shafiq & Sultan, Ibrahim, 2014. "A hybrid wrapper–filter approach to detect the source(s) of out-of-control signals in multivariate manufacturing process," European Journal of Operational Research, Elsevier, vol. 237(3), pages 857-870.
- Martón, I. & Sánchez, A.I. & Martorell, S., 2015. "Ageing PSA incorporating effectiveness of maintenance and testing," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 131-140.
- John G. Cragg & Russell S. Uhler, 1970. "The Demand for Automobiles," Canadian Journal of Economics, Canadian Economics Association, vol. 3(3), pages 386-406, August.
- Robert Thorndike, 1953. "Who belongs in the family?," Psychometrika, Springer;The Psychometric Society, vol. 18(4), pages 267-276, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhou, Hang & Lopes Genez, Thiago Augusto & Brintrup, Alexandra & Parlikad, Ajith Kumar, 2022. "A hybrid-learning decomposition algorithm for competing risk identification within fleets of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Chang, Ping-Chen, 2022. "MC-based simulation approach for two-terminal multi-state network reliability evaluation without knowing d-MCs," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
- Hong Xu & Baorui Zhang, 2022. "Diverse and Flexible Coping Strategy for Nuclear Safety: Opportunities and Challenges," Energies, MDPI, vol. 15(17), pages 1-21, August.
- Chang, Ping-Chen & Huang, Ding-Hsiang & Lin, Yi-Kuei & Nguyen, Thi-Phuong, 2021. "Reliability and maintenance models for a time-related multi-state flow network via d-MC approach," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Wu, Shaomin, 2021. "Two methods to approximate the superposition of imperfect failure processes," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Armagan, Artin & Dunson, David, 2011. "Sparse variational analysis of linear mixed models for large data sets," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1056-1062, August.
- Becken, Susanne & Stantic, Bela & Chen, Jinyan & Connolly, Rod M., 2022. "Twitter conversations reveal issue salience of aviation in the broader context of climate change," Journal of Air Transport Management, Elsevier, vol. 98(C).
- Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022.
"APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
- Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2021. "Approximate Bayesian inference and forecasting in huge-dimensional multi-country VARs," Papers 2103.04944, arXiv.org, revised Feb 2022.
- Eliaz, Kfir & Spiegler, Ran, 2022.
"On incentive-compatible estimators,"
Games and Economic Behavior, Elsevier, vol. 132(C), pages 204-220.
- Eliaz, Kfir & Spiegler, Ran, 2018. "Incentive Compatible Estimators," CEPR Discussion Papers 12804, C.E.P.R. Discussion Papers.
- Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
- Archana R. Panhalkar & Dharmpal D. Doye, 2020. "An approach of improving decision tree classifier using condensed informative data," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 431-445, December.
- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Korobilis, Dimitris, 2015.
"Quantile forecasts of inflation under model uncertainty,"
MPRA Paper
64341, University Library of Munich, Germany.
- Dimitris Korobilis., 2015. "Quantile forecasts of inflation under model uncertainty," Working Papers 2015_09, Business School - Economics, University of Glasgow.
- Korobilis, Dimitris, 2015. "Quantile forecasts of inflation under model uncertainty," SIRE Discussion Papers 2015-72, Scottish Institute for Research in Economics (SIRE).
- Michele Cincera, 2005.
"Firms' productivity growth and R&D spillovers: An analysis of alternative technological proximity measures,"
Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(8), pages 657-682.
- Michele Cincera, 2005. "Firms' productivity growth and R&D spillovers: an analysis of alternative technological proximity measures," ULB Institutional Repository 2013/5490, ULB -- Universite Libre de Bruxelles.
- Michele Cincera, 2005. "Firms’ productivity growth and R&D spillovers: An analysis of alternative technological proximity measures," ULB Institutional Repository 2013/289621, ULB -- Universite Libre de Bruxelles.
- Cincera, Michele, 2005. "Firms' Productivity Growth and R&D Spillovers: An Analysis of Alternative Technological Proximity Measures," CEPR Discussion Papers 4894, C.E.P.R. Discussion Papers.
- Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
- Damien Rousselière, 2019.
"A Flexible Approach to Age Dependence in Organizational Mortality: Comparing the Life Duration for Cooperative and Non-Cooperative Enterprises Using a Bayesian Generalized Additive Discrete Time Survi,"
Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(4), pages 829-855, December.
- Damien Rousselière, 2017. "A flexible approach to age dependence in organizational mortality. Comparing the life duration for cooperative and non-cooperative enterprises using a Bayesian Generalized Additive Discrete Time Survi," Working Papers SMART 17-08, INRAE UMR SMART.
- Damien Rousselière, 2019. "A Flexible Approach to Age Dependence in Organizational Mortality: Comparing the Life Duration for Cooperative and Non-Cooperative Enterprises Using a Bayesian Generalized Additive Discrete Time Survi," Post-Print hal-02107866, HAL.
- Rousselière, Damien, 2017. "A flexible approach to age dependence in organizational mortality. Comparing the life duration of cooperative and non-cooperative enterprises using a Bayesian Generalized Additive Discrete Time Surviv," Working Papers 264214, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
- Horstmann, Felix, 2017. "Measuring the shopper's attitude toward the point of sale display: Scale development and validation," Journal of Retailing and Consumer Services, Elsevier, vol. 36(C), pages 112-123.
- Chakraborty, Sounak, 2012. "Bayesian multiple response kernel regression model for high dimensional data and its practical applications in near infrared spectroscopy," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2742-2755.
- Sue Kilpatrick & Bruce Felmingham, 1996. "Labour Mobility in the Australian Regions," The Economic Record, The Economic Society of Australia, vol. 72(218), pages 214-223, September.
- Elizaveta Zinovyeva & Raphael C. G. Reule & Wolfgang Karl Hardle, 2021.
"Understanding Smart Contracts: Hype or Hope?,"
Papers
2103.08447, arXiv.org.
- Zinovyev, Elizaveta & Reule, Raphael C. G. & Härdle, Wolfgang, 2021. "Understanding Smart Contracts: Hype or hope?," IRTG 1792 Discussion Papers 2021-004, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
- Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
- Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
- Zhao, Yingrui & Hu, Songhua & Zhang, Ming, 2024. "Evaluating equitable Transit-Oriented development (TOD) via the Node-Place-People model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
More about this item
Keywords
Multi-state degradation modelling; Weibull regressions model; Variable selection; Bayesian inference; MCMC algorithms;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:200:y:2020:i:c:s0951832019300481. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.