IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v92y2007i3p286-292.html
   My bibliography  Save this article

Design of PH-based accelerated life testing plans under multiple-stress-type

Author

Listed:
  • Elsayed, E.A.
  • Zhang, Hao

Abstract

Accelerated life testing (ALT) is used to obtain failure time data quickly under high stress levels in order to predict product life performance under design stress conditions. Most of the previous work on designing ALT plans is focused on the application of a single stress. However, as components or products become more reliable due to technological advances, it becomes more difficult to obtain significant amount of failure data within reasonable amount of time using single stress only. Multiple-stress-type ALTs have been employed as a means of overcoming such difficulties. In this paper, we design optimum multiple-stress-type ALT plans based on the proportional hazards model. The optimum combinations of stresses and their levels are determined such that the variance of the reliability estimate of the product over a specified period of time is minimized. The use of the model is illustrated using numerical example, and sensitivity analysis shows that the resultant optimum ALT plan is robust to the deviation in model parameters.

Suggested Citation

  • Elsayed, E.A. & Zhang, Hao, 2007. "Design of PH-based accelerated life testing plans under multiple-stress-type," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 286-292.
  • Handle: RePEc:eee:reensy:v:92:y:2007:i:3:p:286-292
    DOI: 10.1016/j.ress.2006.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832006000937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2006.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harald Hannerz, 2001. "An extension of relational methods in mortality estimations," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 4(10), pages 337-368.
    2. Jung‐Won Park & Bong‐Jin Yum, 1996. "Optimal design of accelerated life tests with two stresses," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 863-884, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haghighi, Firoozeh, 2014. "Optimal design of accelerated life tests for an extension of the exponential distribution," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 251-256.
    2. Ekene Gabriel Okafor & Whit Vinson & David Ryan Huitink, 2023. "Effect of Stress Interaction on Multi-Stress Accelerated Life Test Plan: Assessment Based on Particle Swarm Optimization," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    3. Yin, Yi-Chao & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2017. "An imprecise statistical method for accelerated life testing using the power-Weibull model," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 158-167.
    4. Compare, M. & Baraldi, P. & Bani, I. & Zio, E. & McDonnell, D., 2020. "Industrial equipment reliability estimation: A Bayesian Weibull regression model with covariate selection," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    5. Ao, Dan & Hu, Zhen & Mahadevan, Sankaran, 2017. "Design of validation experiments for life prediction models," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 22-33.
    6. Finkelstein, Maxim, 2013. "On dependent items in series in different environments," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 119-122.
    7. Ye, Xuerong & Hu, Yifan & Zheng, Bokai & Chen, Cen & Zhai, Guofu, 2022. "A new class of multi-stress acceleration models with interaction effects and its extension to accelerated degradation modelling," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Qin, Shuidan & Wang, Bing Xing & Wu, Wenhui & Ma, Chao, 2022. "The prediction intervals of remaining useful life based on constant stress accelerated life test data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 747-755.
    9. Volf, P. & Timková, J., 2014. "On selection of optimal stochastic model for accelerated life testing," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 291-297.
    10. Traore, M. & Chammas, A. & Duviella, E., 2015. "Supervision and prognosis architecture based on dynamical classification method for the predictive maintenance of dynamical evolving systems," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 120-131.
    11. Moustafa, Kassem & Hu, Zhen & Mourelatos, Zissimos P. & Baseski, Igor & Majcher, Monica, 2021. "System reliability analysis using component-level and system-level accelerated life testing," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    12. Zhaojun Yang & Xiaoxu Li & Chuanhai Chen & Hongxun Zhao & Dingyu Yang & Jinyan Guo & Wei Luo, 2019. "Reliability assessment of the spindle systems with a competing risk model," Journal of Risk and Reliability, , vol. 233(2), pages 226-234, April.
    13. Han, David, 2015. "Time and cost constrained optimal designs of constant-stress and step-stress accelerated life tests," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 1-14.
    14. Yao Liu & Yashun Wang & Zhengwei Fan & Xun Chen & Chunhua Zhang & Yuanyuan Tan, 2020. "A new universal multi-stress acceleration model and multi-parameter estimation method based on particle swarm optimization," Journal of Risk and Reliability, , vol. 234(6), pages 764-778, December.
    15. Abdullah AH Ahmadini & Frank PA Coolen, 2020. "Statistical inference for the Arrhenius-Weibull accelerated life testing model with imprecision based on the likelihood ratio test," Journal of Risk and Reliability, , vol. 234(2), pages 275-289, April.
    16. Tian, Zhigang & Liao, Haitao, 2011. "Condition based maintenance optimization for multi-component systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 581-589.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    2. Yada Zhu & Elsayed A. Elsayed, 2013. "Design of accelerated life testing plans under multiple stresses," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(6), pages 468-478, September.
    3. Kirill F. Andreev & James W. Vaupel, 2006. "Forecasts of cohort mortality after age 50," MPIDR Working Papers WP-2006-012, Max Planck Institute for Demographic Research, Rostock, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:92:y:2007:i:3:p:286-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.