IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v199y2020ics0951832019303096.html
   My bibliography  Save this article

Unsupervised local cluster-weighted bootstrap aggregating the output from multiple stochastic simulators

Author

Listed:
  • Abdallah, Imad
  • Tatsis, Konstantinos
  • Chatzi, Eleni

Abstract

In the present work, we consider the problem of combining the output from multiple stochastic computer simulators to make inference on a quantity of interest, as a means of reducing the inherent model-form uncertainty in the absence of any measurements. In most real-world situations, judging an individual stochastic simulator to be the “best†for any given point in the input space is highly doubtful. Thus, making inference by relying on the so-deemed best simulator may not be adequate, especially when the sampled data is limited. To this end, we propose an ensemble learning method based on local Clustering and bootstrap aggregation (Bagging), which rather than treating the stochastic predictions of the simulators as competing individual information sources, treats those as part of an ensemble, thus diversifying the hypothesis space. We call the proposed method: unsupervised local cluster-weighted bootstrap aggregation. Variational Bayesian Gaussian mixture clustering is the first step in this ensemble learning approach for discriminating the outputs, and deriving the probability map (weights) of the clustered simulators output. Clustering is performed on the stochastic output corresponding to the binned input space. Performing the clustering independently and deriving the probability map for each local region of the binned input space is a novelty that guarantees an adaptive solution, whereby certain simulators are potentially more fitting than others in corresponding regions of the input space. The second step consists in a local cluster-weighted Bootstrap Aggregation, which serves the purpose of weighted combination of the clustered ensemble of outputs from the individual simulators. Based on simulations, we demonstrate how the input bin size, sample size, output dispersion and level of agreement amongst the simulators affect the performance of the proposed method. We compare the unsupervised local cluster-weighted bootstrap aggregation method to classical Bagging, Bayesian Model Averaging and Stacking of predictive distributions. Finally, we demonstrate the method by evaluating the fatigue damage equivalent load on a wind turbine blade, using 10 finite element based simulators. The results point to the need for practitioners to consider this as a useful method, when model-form uncertainty is of concern and when output from multiple stochastic simulators are available.

Suggested Citation

  • Abdallah, Imad & Tatsis, Konstantinos & Chatzi, Eleni, 2020. "Unsupervised local cluster-weighted bootstrap aggregating the output from multiple stochastic simulators," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019303096
    DOI: 10.1016/j.ress.2020.106876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019303096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qingzhao Yu, 2011. "Weighted bagging: a modification of AdaBoost from the perspective of importance sampling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(3), pages 451-463, October.
    2. Radaideh, Majdi I. & Borowiec, Katarzyna & Kozlowski, Tomasz, 2019. "Integrated framework for model assessment and advanced uncertainty quantification of nuclear computer codes under Bayesian statistics," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 357-377.
    3. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    4. Roopesh Ranjan & Tilmann Gneiting, 2010. "Combining probability forecasts," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 71-91, January.
    5. Li, Zhixiong & Wu, Dazhong & Hu, Chao & Terpenny, Janis, 2019. "An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 110-122.
    6. Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
    7. Liu, Di & Wang, Shaoping & Zhang, Chao & Tomovic, Mileta, 2018. "Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 25-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Hang & Lopes Genez, Thiago Augusto & Brintrup, Alexandra & Parlikad, Ajith Kumar, 2022. "A hybrid-learning decomposition algorithm for competing risk identification within fleets of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Braga, Joaquim A.P. & Andrade, António R., 2021. "Multivariate statistical aggregation and dimensionality reduction techniques to improve monitoring and maintenance in railways: The wheelset component," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    2. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    3. Stephen C. Hora & Benjamin R. Fransen & Natasha Hawkins & Irving Susel, 2013. "Median Aggregation of Distribution Functions," Decision Analysis, INFORMS, vol. 10(4), pages 279-291, December.
    4. Mehmet Eren Ahsen & Mehmet Ulvi Saygi Ayvaci & Srinivasan Raghunathan, 2019. "When Algorithmic Predictions Use Human-Generated Data: A Bias-Aware Classification Algorithm for Breast Cancer Diagnosis," Service Science, INFORMS, vol. 30(1), pages 97-116, March.
    5. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    6. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    7. Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
    8. Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," NBER Working Papers 21637, National Bureau of Economic Research, Inc.
    9. Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
    10. Hajargasht, Gholamreza & Rao, D.S. Prasada, 2019. "Multilateral index number systems for international price comparisons: Properties, existence and uniqueness," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 36-47.
    11. Lahiri, Kajal & Peng, Huaming & Zhao, Yongchen, 2015. "Testing the value of probability forecasts for calibrated combining," International Journal of Forecasting, Elsevier, vol. 31(1), pages 113-129.
    12. Avner Engel & Shalom Shachar, 2006. "Measuring and optimizing systems' quality costs and project duration," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 259-280, September.
    13. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    14. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    15. Atanasov, Pavel & Witkowski, Jens & Ungar, Lyle & Mellers, Barbara & Tetlock, Philip, 2020. "Small steps to accuracy: Incremental belief updaters are better forecasters," Organizational Behavior and Human Decision Processes, Elsevier, vol. 160(C), pages 19-35.
    16. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    17. Youngseon Lee & Seongil Jo & Jaeyong Lee, 2022. "A variational inference for the Lévy adaptive regression with multiple kernels," Computational Statistics, Springer, vol. 37(5), pages 2493-2515, November.
    18. Asim Ansari & Yang Li & Jonathan Z. Zhang, 2018. "Probabilistic Topic Model for Hybrid Recommender Systems: A Stochastic Variational Bayesian Approach," Marketing Science, INFORMS, vol. 37(6), pages 987-1008, November.
    19. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    20. Franz Dietrich & Christian List, 2017. "Probabilistic opinion pooling generalized. Part one: general agendas," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(4), pages 747-786, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019303096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.