IDEAS home Printed from https://ideas.repec.org/p/osf/metaar/rxmh7_v1.html
   My bibliography  Save this paper

Mathematically aggregating experts' predictions of possible futures

Author

Listed:
  • Hanea, Anca

    (University of Melbourne)

  • Wilkinson, David Peter
  • McBride, Marissa
  • Lyon, Aidan
  • van Ravenzwaaij, Don

    (University of Groningen)

  • Singleton Thorn, Felix

    (University of Melbourne)

  • Gray, Charles T.
  • Mandel, David R.
  • Willcox, Aaron

    (Melbourne University)

  • Gould, Elliot

    (Interdisciplinary MetaResearch Group (SCORE Project))

Abstract

Experts are often asked to represent their uncertainty as a subjective probability. Structured protocols offer a transparent and systematic way to elicit and combine probability judgements from multiple experts. As part of this process, experts are asked to individually estimate a probability (e.g., of a future event) which needs to be combined, or aggregated, into a final group prediction. The experts' judgements can be aggregated behaviourally (by striving for consensus), or mathematically (by using a mathematical rule to combine individual estimates). Mathematical rules (e.g., weighted linear combinations of judgments) provide an objective approach to aggregation. However, the choice of a rule is not straightforward, and the quality of the aggregated group judgement depends on it. The quality of an aggregation can be defined in terms of accuracy, calibration and informativeness. These measures can be used to compare different aggregation approaches and help decide on which aggregation produces the ``best” final prediction. In the ideal case, individual experts' performance (as probability assessors) would be scored on similar questions ahead of time, these scores translated into performance-based weights, and a performance-based weighted aggregation could then be used. When this is not possible though, several other aggregation methods, informed by measurable proxies for good performance, can be formulated and compared. Here, we develop a suite of aggregation methods, informed by previous experience and the available literature. Next, we investigate the relative performance of these aggregation methods using three datasets. Although the accuracy, calibration, and informativeness of the majority of methods are very similar, a couple of the aggregation methods consistently distinguish themselves as among the best or worst.

Suggested Citation

  • Hanea, Anca & Wilkinson, David Peter & McBride, Marissa & Lyon, Aidan & van Ravenzwaaij, Don & Singleton Thorn, Felix & Gray, Charles T. & Mandel, David R. & Willcox, Aaron & Gould, Elliot, 2021. "Mathematically aggregating experts' predictions of possible futures," MetaArXiv rxmh7_v1, Center for Open Science.
  • Handle: RePEc:osf:metaar:rxmh7_v1
    DOI: 10.31219/osf.io/rxmh7_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/6034ba3434d30404cee44fc2/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/rxmh7_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lyon, Aidan & Wintle, Bonnie C. & Burgman, Mark, 2015. "Collective wisdom: Methods of confidence interval aggregation," Journal of Business Research, Elsevier, vol. 68(8), pages 1759-1767.
    2. Dražen Prelec & H. Sebastian Seung & John McCoy, 2017. "A solution to the single-question crowd wisdom problem," Nature, Nature, vol. 541(7638), pages 532-535, January.
    3. Jose, Victor Richmond R. & Winkler, Robert L., 2008. "Simple robust averages of forecasts: Some empirical results," International Journal of Forecasting, Elsevier, vol. 24(1), pages 163-169.
    4. Satopää, Ville A. & Baron, Jonathan & Foster, Dean P. & Mellers, Barbara A. & Tetlock, Philip E. & Ungar, Lyle H., 2014. "Combining multiple probability predictions using a simple logit model," International Journal of Forecasting, Elsevier, vol. 30(2), pages 344-356.
    5. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    6. Roopesh Ranjan & Tilmann Gneiting, 2010. "Combining probability forecasts," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 71-91, January.
    7. Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
    8. Willy Aspinall, 2010. "A route to more tractable expert advice," Nature, Nature, vol. 463(7279), pages 294-295, January.
    9. Mandel, David R. & Collins, Robert N. & Risko, Evan F. & Fugelsang, Jonathan A., 2020. "Effect of confidence interval construction on judgment accuracy," Judgment and Decision Making, Cambridge University Press, vol. 15(5), pages 783-797, September.
    10. Han, Ying & Budescu, David, 2019. "A universal method for evaluating the quality of aggregators," Judgment and Decision Making, Cambridge University Press, vol. 14(4), pages 395-411, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alipourfard, Nazanin & Arendt, Beatrix & Benjamin, Daniel Jacob & Benkler, Noam & Bishop, Michael Metcalf & Burstein, Mark & Bush, Martin & Caverlee, James & Chen, Yiling & Clark, Chae, 2021. "Systematizing Confidence in Open Research and Evidence (SCORE)," SocArXiv 46mnb, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanea, Anca & Wilkinson, David Peter & McBride, Marissa & Lyon, Aidan & van Ravenzwaaij, Don & Singleton Thorn, Felix & Gray, Charles T. & Mandel, David R. & Willcox, Aaron & Gould, Elliot, 2021. "Mathematically aggregating experts' predictions of possible futures," MetaArXiv rxmh7, Center for Open Science.
    2. Satopää, Ville A., 2021. "Improving the wisdom of crowds with analysis of variance of predictions of related outcomes," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1728-1747.
    3. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    4. Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Ville A. Satopää & Marat Salikhov & Philip E. Tetlock & Barbara Mellers, 2021. "Bias, Information, Noise: The BIN Model of Forecasting," Management Science, INFORMS, vol. 67(12), pages 7599-7618, December.
    7. Satopää, Ville A. & Salikhov, Marat & Tetlock, Philip E. & Mellers, Barbara, 2023. "Decomposing the effects of crowd-wisdom aggregators: The bias–information–noise (BIN) model," International Journal of Forecasting, Elsevier, vol. 39(1), pages 470-485.
    8. Hanea, A.M. & McBride, M.F. & Burgman, M.A. & Wintle, B.C. & Fidler, F. & Flander, L. & Twardy, C.R. & Manning, B. & Mascaro, S., 2017. "I nvestigate D iscuss E stimate A ggregate for structured expert judgement," International Journal of Forecasting, Elsevier, vol. 33(1), pages 267-279.
    9. Anca M. Hanea & Marissa F. McBride & Mark A. Burgman & Bonnie C. Wintle, 2018. "The Value of Performance Weights and Discussion in Aggregated Expert Judgments," Risk Analysis, John Wiley & Sons, vol. 38(9), pages 1781-1794, September.
    10. Eric Libby & Leon Glass, 2010. "The Calculus of Committee Composition," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-8, September.
    11. Aitazaz Ali Raja & Pierre Pinson & Jalal Kazempour & Sergio Grammatico, 2022. "A Market for Trading Forecasts: A Wagering Mechanism," Papers 2205.02668, arXiv.org, revised Oct 2022.
    12. Victor Richmond R. Jose & Yael Grushka-Cockayne & Kenneth C. Lichtendahl, 2014. "Trimmed Opinion Pools and the Crowd's Calibration Problem," Management Science, INFORMS, vol. 60(2), pages 463-475, February.
    13. David V. Budescu & Eva Chen, 2015. "Identifying Expertise to Extract the Wisdom of Crowds," Management Science, INFORMS, vol. 61(2), pages 267-280, February.
    14. Jared A. Beekman & Ronald F. A. Woodaman & Dennis M. Buede, 2020. "A Review of Probabilistic Opinion Pooling Algorithms with Application to Insider Threat Detection," Decision Analysis, INFORMS, vol. 17(1), pages 39-55, March.
    15. Taylor, James W. & Taylor, Kathryn S., 2023. "Combining probabilistic forecasts of COVID-19 mortality in the United States," European Journal of Operational Research, Elsevier, vol. 304(1), pages 25-41.
    16. Fergus Bolger & Gene Rowe, 2015. "The Aggregation of Expert Judgment: Do Good Things Come to Those Who Weight?," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 5-11, January.
    17. Fathy, Mohammad & Kazemzadeh Haghighi, Foojan & Ahmadi, Mohammad, 2024. "Uncertainty quantification of reservoir performance using machine learning algorithms and structured expert judgment," Energy, Elsevier, vol. 288(C).
    18. Asa B. Palley & Jack B. Soll, 2019. "Extracting the Wisdom of Crowds When Information Is Shared," Management Science, INFORMS, vol. 67(5), pages 2291-2309, May.
    19. Raja, Aitazaz Ali & Pinson, Pierre & Kazempour, Jalal & Grammatico, Sergio, 2024. "A market for trading forecasts: A wagering mechanism," International Journal of Forecasting, Elsevier, vol. 40(1), pages 142-159.
    20. Ville A. Satopää & Robin Pemantle & Lyle H. Ungar, 2016. "Modeling Probability Forecasts via Information Diversity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1623-1633, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:metaar:rxmh7_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/metaarxiv .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.