IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v193y2020ics0951832019300717.html
   My bibliography  Save this article

Reliability-based partial factors for flood defenses

Author

Listed:
  • Jongejan, R.B.
  • Diermanse, F.
  • Kanning, W.
  • Bottema, M.

Abstract

The Netherlands is protected against major floods by a system of primary flood defenses. These primary flood defenses have to comply with flood protection standards. Since 2017, these are defined in terms of maximum allowable probabilities of flooding. This is why a new set of tools and guidelines had to be developed, allowing for probabilistic as well as semi-probabilistic assessments. Semi-probabilistic assessments rest on a Load and Resistance Factor Design (LRFD) approach. Since major levee systems are essentially series systems with little to no redundancy, the difference between component and system reliability is essential for reliability analyses of flood defenses. This paper discusses the code calibration procedure that was developed to ensure consistency between probabilistic and semi-probabilistic assessments of flood protection systems and their components. Example applications are provided for two failure modes: slope instability and dune erosion. The newly calibrated semi-probabilistic rules allow practitioners to assess the reliability of flood protection systems on the basis of component-level semi-probabilistic LRFD analyses for individual failure modes.

Suggested Citation

  • Jongejan, R.B. & Diermanse, F. & Kanning, W. & Bottema, M., 2020. "Reliability-based partial factors for flood defenses," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832019300717
    DOI: 10.1016/j.ress.2019.106589
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019300717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106589?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. B. Jongejan & B. Maaskant, 2015. "Quantifying Flood Risks in the Netherlands," Risk Analysis, John Wiley & Sons, vol. 35(2), pages 252-264, February.
    2. Sebastiaan N. Jonkman & Ruben Jongejan & Bob Maaskant, 2011. "The Use of Individual and Societal Risk Criteria Within the Dutch Flood Safety Policy—Nationwide Estimates of Societal Risk and Policy Applications," Risk Analysis, John Wiley & Sons, vol. 31(2), pages 282-300, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rongen, G. & Morales-Nápoles, O. & Kok, M., 2022. "Expert judgment-based reliability analysis of the Dutch flood defense system," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    2. Klerk, Wouter Jan & Kanning, Wim & Kok, Matthijs & Wolfert, Rogier, 2021. "Optimal planning of flood defence system reinforcements using a greedy search algorithm," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    3. Rajabzadeh, Vida & Hekmatzadeh, Ali Akbar & Tabatabaie Shourijeh, Piltan & Torabi Haghighi, Ali, 2023. "Introducing a probabilistic framework to measure dam overtopping risk for dams benefiting from dual spillways," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Zhao, Tengyuan & Wang, Yu, 2020. "Non-parametric simulation of non-stationary non-gaussian 3D random field samples directly from sparse measurements using signal decomposition and Markov Chain Monte Carlo (MCMC) simulation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongen, G. & Morales-Nápoles, O. & Kok, M., 2022. "Expert judgment-based reliability analysis of the Dutch flood defense system," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    2. Alessio Ciullo & Jan H. Kwakkel & Karin M. De Bruijn & Neelke Doorn & Frans Klijn, 2020. "Efficient or Fair? Operationalizing Ethical Principles in Flood Risk Management: A Case Study on the Dutch‐German Rhine," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1844-1862, September.
    3. Tim Bedford, 2013. "Decision Making for Group Risk Reduction: Dealing with Epistemic Uncertainty," Risk Analysis, John Wiley & Sons, vol. 33(10), pages 1884-1898, October.
    4. Zongzhi Wang & Jingjing Wu & Liang Cheng & Kelin Liu & Yi-Ming Wei, 2018. "Regional flood risk assessment via coupled fuzzy c-means clustering methods: an empirical analysis from China’s Huaihe River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 803-822, September.
    5. R. B. Jongejan & B. Maaskant, 2015. "Quantifying Flood Risks in the Netherlands," Risk Analysis, John Wiley & Sons, vol. 35(2), pages 252-264, February.
    6. S. Pereira & J. L. Zêzere & I. Quaresma & P. P. Santos & M. Santos, 2016. "Mortality Patterns of Hydro‐Geomorphologic Disasters," Risk Analysis, John Wiley & Sons, vol. 36(6), pages 1188-1210, June.
    7. Klerk, Wouter Jan & Kanning, Wim & Kok, Matthijs & Wolfert, Rogier, 2021. "Optimal planning of flood defence system reinforcements using a greedy search algorithm," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Charles Vlek, 2013. "What Can National Risk Assessors Learn from Decision Theorists and Psychologists?," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1389-1393, August.
    9. Valentina Ferretti & Gilberto Montibeller, 2019. "An Integrated Framework for Environmental Multi‐Impact Spatial Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 257-273, January.
    10. Chengguang Lai & Xiaohong Chen & Zhaoli Wang & Haijun Yu & Xiaoyan Bai, 2020. "Flood Risk Assessment and Regionalization from Past and Future Perspectives at Basin Scale," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1399-1417, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832019300717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.