IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5775-d1524307.html
   My bibliography  Save this article

Design and Visual Implementation of a Regional Energy Risk Superposition Model for Oil Tank Farms

Author

Listed:
  • Yufeng Yang

    (Institute of Science and Technology, China Oil & Gas Pipeline Network Corporation, Langfang 065000, China)

  • Xixiang Zhang

    (Institute of Science and Technology, China Oil & Gas Pipeline Network Corporation, Langfang 065000, China)

  • Shuyi Xie

    (State Key Laboratory of Oil and Gas Equipment, CNPC Tubular Goods Research Institute, Xi’an 710077, China)

  • Shanqi Qu

    (Institute of Safety Science & Engineering, South China University of Technology, Guangzhou 510640, China
    Guangdong Provincial Science and Technology Collaborative Innovation Center for Work Safety, Guangzhou 510640, China)

  • Haotian Chen

    (Institute of Safety Science & Engineering, South China University of Technology, Guangzhou 510640, China
    Guangdong Provincial Science and Technology Collaborative Innovation Center for Work Safety, Guangzhou 510640, China)

  • Qiming Xu

    (Institute of Safety Science & Engineering, South China University of Technology, Guangzhou 510640, China
    Guangdong Provincial Science and Technology Collaborative Innovation Center for Work Safety, Guangzhou 510640, China)

  • Guohua Chen

    (Institute of Safety Science & Engineering, South China University of Technology, Guangzhou 510640, China
    Guangdong Provincial Science and Technology Collaborative Innovation Center for Work Safety, Guangzhou 510640, China)

Abstract

Ensuring the safety of oil tank farms is essential to maintaining energy security and minimizing the impact of potential accidents. This paper develops a quantitative regional risk model designed to assess both individual and societal risks in oil tank farms, with particular attention to energy-related risks such as leaks, fires, and explosions. The model integrates factors like day–night operational variations, weather conditions, and risk superposition to provide a comprehensive and accurate evaluation of regional risks. By considering the cumulative effects of multiple hazards, including those tied to energy dynamics, and the stability and validity of the model are researched through Monte Carlo simulations and case application. The results show that the model enhances the reliability of traditional risk assessment methods, making it more applicable to oil tank farm safety concerns. Furthermore, this study introduces a practical tool that simplifies the risk assessment process, allowing operators and decision-makers to evaluate risks without requiring in-depth technical expertise. The methodology improves the ability to safeguard oil tank farms, ensuring the stability of energy supply chains and contributing to broader energy security efforts. This study provides a valuable method for researchers and engineers seeking to enhance regional risk calculation efficiency, with a specific focus on energy risks.

Suggested Citation

  • Yufeng Yang & Xixiang Zhang & Shuyi Xie & Shanqi Qu & Haotian Chen & Qiming Xu & Guohua Chen, 2024. "Design and Visual Implementation of a Regional Energy Risk Superposition Model for Oil Tank Farms," Energies, MDPI, vol. 17(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5775-:d:1524307
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5775/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5775/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastiaan N. Jonkman & Ruben Jongejan & Bob Maaskant, 2011. "The Use of Individual and Societal Risk Criteria Within the Dutch Flood Safety Policy—Nationwide Estimates of Societal Risk and Policy Applications," Risk Analysis, John Wiley & Sons, vol. 31(2), pages 282-300, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim Bedford, 2013. "Decision Making for Group Risk Reduction: Dealing with Epistemic Uncertainty," Risk Analysis, John Wiley & Sons, vol. 33(10), pages 1884-1898, October.
    2. Rongen, G. & Morales-Nápoles, O. & Kok, M., 2022. "Expert judgment-based reliability analysis of the Dutch flood defense system," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    3. Jongejan, R.B. & Diermanse, F. & Kanning, W. & Bottema, M., 2020. "Reliability-based partial factors for flood defenses," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Alessio Ciullo & Jan H. Kwakkel & Karin M. De Bruijn & Neelke Doorn & Frans Klijn, 2020. "Efficient or Fair? Operationalizing Ethical Principles in Flood Risk Management: A Case Study on the Dutch‐German Rhine," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1844-1862, September.
    5. R. B. Jongejan & B. Maaskant, 2015. "Quantifying Flood Risks in the Netherlands," Risk Analysis, John Wiley & Sons, vol. 35(2), pages 252-264, February.
    6. S. Pereira & J. L. Zêzere & I. Quaresma & P. P. Santos & M. Santos, 2016. "Mortality Patterns of Hydro‐Geomorphologic Disasters," Risk Analysis, John Wiley & Sons, vol. 36(6), pages 1188-1210, June.
    7. Charles Vlek, 2013. "What Can National Risk Assessors Learn from Decision Theorists and Psychologists?," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1389-1393, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5775-:d:1524307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.