IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v591y2022ics0378437121009705.html
   My bibliography  Save this article

Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions

Author

Listed:
  • Gangwal, Utkarsh
  • Singh, Mayank
  • Pandey, Pradumn Kumar
  • Kamboj, Deepak
  • Chatterjee, Samrat
  • Bhatia, Udit

Abstract

Tsunamis, power blackouts, and distribution systems failure drastically affect the networked infrastructure systems which further affect a countries economy. Moreover, if these systems reach critical thresholds, they may experience disproportionate losses in the system’s functionality. Here we propose an approach to identify the critical thresholds and observe the presence of warning regions for real-world transportation systems. While attack tolerance of networked systems has been intensively studied for the disruptions originating from a single point of failure, there have been instances where real-world systems are subject to concurrent disruptions at multiple locations. We determine the entire robustness characteristics of transportation networks of disparate architecture subject to disruptions of varying sizes. Using United States Airspace Airport network and Indian Railways Network data, and synthetic networks as prototype class of systems, we study their responses to synthetic attack strategies of varying sizes. We also observe the significant relationships between network robustness and size of simultaneous disruptions for the complex networked infrastructures for random failures and targeted attacks. Our approach can serve as a paradigm to understand the point of sudden collapse in real-world systems, and the principle can be extended to other network infrastructures to address critical issues of risk management, resilience, and system safety.

Suggested Citation

  • Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
  • Handle: RePEc:eee:phsmap:v:591:y:2022:i:c:s0378437121009705
    DOI: 10.1016/j.physa.2021.126796
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121009705
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    2. Volovoi, Vitali, 2013. "Universal failure model for multi-unit systems with shared functionality," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 141-149.
    3. Flaviano Morone & Hernán A. Makse, 2015. "Correction: Corrigendum: Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 527(7579), pages 544-544, November.
    4. Hoepfer, V.M. & Saleh, J.H. & Marais, K.B., 2009. "On the value of redundancy subject to common-cause failures: Toward the resolution of an on-going debate," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1904-1916.
    5. Hong, Liu & Ouyang, Min & Peeta, Srinivas & He, Xiaozheng & Yan, Yongze, 2015. "Vulnerability assessment and mitigation for the Chinese railway system under floods," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 58-68.
    6. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Erratum: Universal resilience patterns in complex networks," Nature, Nature, vol. 536(7615), pages 238-238, August.
    7. Antonio Majdandzic & Lidia A. Braunstein & Chester Curme & Irena Vodenska & Sary Levy-Carciente & H. Eugene Stanley & Shlomo Havlin, 2016. "Multiple tipping points and optimal repairing in interacting networks," Nature Communications, Nature, vol. 7(1), pages 1-10, April.
    8. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Universal resilience patterns in complex networks," Nature, Nature, vol. 530(7590), pages 307-312, February.
    9. Igor Linkov & Todd Bridges & Felix Creutzig & Jennifer Decker & Cate Fox-Lent & Wolfgang Kröger & James H. Lambert & Anders Levermann & Benoit Montreuil & Jatin Nathwani & Raymond Nyer & Ortwin Renn &, 2014. "Changing the resilience paradigm," Nature Climate Change, Nature, vol. 4(6), pages 407-409, June.
    10. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    11. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    12. Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
    13. Dong, Shangjia & Wang, Haizhong & Mostafizi, Alireza & Song, Xuan, 2020. "A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    14. Winkler, James & Dueñas-Osorio, Leonardo & Stein, Robert & Subramanian, Devika, 2010. "Performance assessment of topologically diverse power systems subjected to hurricane events," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 323-336.
    15. Zhang, Jianhua & Xu, Xiaoming & Hong, Liu & Wang, Shuliang & Fei, Qi, 2011. "Networked analysis of the Shanghai subway network, in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4562-4570.
    16. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    17. Peng, Xiaoyi & Zhao, Yi & Small, Michael, 2020. "Identification and prediction of bifurcation tipping points using complex networks based on quasi-isometric mapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    18. Tiziano Squartini & Iman van Lelyveld & Diego Garlaschelli, 2013. "Early-warning signals of topological collapse in interbank networks," Papers 1302.2063, arXiv.org, revised Nov 2013.
    19. Pagani, Giuliano Andrea & Aiello, Marco, 2013. "The Power Grid as a complex network: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(11), pages 2688-2700.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    2. Kim, Dong Hwan & Eisenberg, Daniel A. & Chun, Yeong Han & Park, Jeryang, 2017. "Network topology and resilience analysis of South Korean power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 13-24.
    3. Jiang, Wenjun & Fan, Tianlong & Li, Changhao & Zhang, Chuanfu & Zhang, Tao & Luo, Zong-fu, 2024. "Comprehensive analysis of network robustness evaluation based on convolutional neural networks with spatial pyramid pooling," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    4. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli, 2021. "Robustness of scale-free networks with dynamical behavior against multi-node perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Zhang, Dayong & Men, Hao & Zhang, Zhaoxin, 2024. "Assessing the stability of collaboration networks: A structural cohesion analysis perspective," Journal of Informetrics, Elsevier, vol. 18(1).
    6. Didier Wernli & Lucas Böttcher & Flore Vanackere & Yuliya Kaspiarovich & Maria Masood & Nicolas Levrat, 2023. "Understanding and governing global systemic crises in the 21st century: A complexity perspective," Global Policy, London School of Economics and Political Science, vol. 14(2), pages 207-228, May.
    7. Zhang, Jianhua & Hu, Funian & Wang, Shuliang & Dai, Yang & Wang, Yixing, 2016. "Structural vulnerability and intervention of high speed railway networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 743-751.
    8. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli & Yao, Shirui, 2022. "Cascading failure in networks with dynamical behavior against multi-node removal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Khakzad, Nima & Reniers, Genserik & Abbassi, Rouzbeh & Khan, Faisal, 2016. "Vulnerability analysis of process plants subject to domino effects," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 127-136.
    10. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    11. Fan, Dongming & Sun, Bo & Dui, Hongyan & Zhong, Jilong & Wang, Ziyao & Ren, Yi & Wang, Zili, 2022. "A modified connectivity link addition strategy to improve the resilience of multiplex networks against attacks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    13. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    14. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    15. Yifan Yang & S. Thomas Ng & Frank J. Xu & Martin Skitmore & Shenghua Zhou, 2019. "Towards Resilient Civil Infrastructure Asset Management: An Information Elicitation and Analytical Framework," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    16. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    17. Rachunok, Benjamin & Nateghi, Roshanak, 2020. "The sensitivity of electric power infrastructure resilience to the spatial distribution of disaster impacts," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    18. Ping Pei & Haihan Zhang & Huizhen Zhang & Chen Yang & Tianbo An, 2024. "Network Synchronization via Pinning Control from an Attacker-Defender Game Perspective," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
    19. Zhu, Weihua & Liu, Kai & Wang, Ming & Yan, Xiaoyong, 2018. "Enhancing robustness of metro networks using strategic defense," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1081-1091.
    20. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:591:y:2022:i:c:s0378437121009705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.