IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004757.html
   My bibliography  Save this article

Classification of equivalent static wind loads: Comparisons and applications

Author

Listed:
  • Tamura, Yukio
  • Chen, Bo
  • Wu, Yue
  • Su, Ning
  • Yang, Qingshan

Abstract

This paper reviews the basic ideas, developments, and codification practices of different calculation methods for equivalent static wind load (ESWL) in the past about sixty years. From the landmark work of Davenport's Gust Loading Factor (GLF), Kasperski's Load-Response-Correlation (LRC), and Katsumura, Tamura's Universal-ESWL (U-ESWL), the development thread of ESWL is clarified. The ESWLs are classified based on the number of target load effects (Single-target or Multiple-target) and on actuality (Realistic or Unrealistic). GLF is representative as a “Single-target Unrealistic†ESWL, which has been adopted in many international codes and standards for building design and is extended into many approaches considering different targets (e.g. base bending moment), and different components (along-wind, crosswind, torsional). The LRC method identifies a realistic wind load distribution that causes one target maximum/minimum load effect, is a representative of “Single-target Realistic†ESWL, is well adopted as a background component ESWL, and is further developed to consider the dynamic resonant effect. The U-ESWL simultaneously reproduces maximum/minimum load effects in multiple structural members with only two sets of load distributions, is a “Multiple-target Unrealistic†ESWL, and has also been developed and employed in a wind load code for roof structures.

Suggested Citation

  • Tamura, Yukio & Chen, Bo & Wu, Yue & Su, Ning & Yang, Qingshan, 2024. "Classification of equivalent static wind loads: Comparisons and applications," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004757
    DOI: 10.1016/j.ress.2024.110403
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004757
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Liuyun & Spence, Seymour M.J., 2024. "Collapse reliability of wind-excited reinforced concrete structures by stratified sampling and nonlinear dynamic analysis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Zheng, Xiao-Wei & Li, Hong-Nan & Gardoni, Paolo, 2023. "Hybrid Bayesian-Copula-based risk assessment for tall buildings subject to wind loads considering various uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    3. Scherb, Anke & Garrè, Luca & Straub, Daniel, 2019. "Evaluating component importance and reliability of power transmission networks subject to windstorms: methodology and application to the nordic grid," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Ma, Liyang & Christou, Vasileios & Bocchini, Paolo, 2022. "Framework for probabilistic simulation of power transmission network performance under hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Rizzo, Fabio & Pistol, Aleksander & Caracoglia, Luca, 2024. "Estimating nonlinear wind-induced response of roof cable nets by aeroelastic experiments and ML modeling," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dikshit, Saransh & Alipour, Alice, 2023. "A moment-matching method for fragility analysis of transmission towers under straight line winds," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Meng, Xiangrui & Tian, Li & Li, Chao & Liu, Juncai, 2024. "Copula-based wind-induced failure prediction of overhead transmission line considering multiple temperature factors," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    3. Bi, Wenzhe & Tian, Li & Li, Chao & Ma, Zhen & Pan, Haiyang, 2023. "Wind-induced failure analysis of a transmission tower-line system with long-term measured data and orientation effect," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Jasiūnas, Justinas & Heikkinen, Tatu & Lund, Peter D. & Láng-Ritter, Ilona, 2023. "Resilience of electric grid to extreme wind: Considering local details at national scale," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Firouzi, Mohsen & Samimi, Abouzar & Salami, Abolfazl, 2022. "Reliability evaluation of a composite power system in the presence of renewable generations," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Jalilpoor, Kamran & Oshnoei, Arman & Mohammadi-Ivatloo, Behnam & Anvari-Moghaddam, Amjad, 2022. "Network hardening and optimal placement of microgrids to improve transmission system resilience: A two-stage linear program," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    8. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    9. Jasiūnas, Justinas & Láng-Ritter, Ilona & Heikkinen, Tatu & Lund, Peter D., 2024. "Case beyond historical severity: Winds, faults, outages, and costs for electric grid," Applied Energy, Elsevier, vol. 373(C).
    10. Gonçalves, Ana & Marques, Margarida Correia & Loureiro, Sílvia & Nieto, Raquel & Liberato, Margarida L.R., 2023. "Disruption risk analysis of the overhead power lines in Portugal," Energy, Elsevier, vol. 263(PA).
    11. Ferrario, E. & Poulos, A. & Castro, S. & de la Llera, J.C. & Lorca, A., 2022. "Predictive capacity of topological measures in evaluating seismic risk and resilience of electric power networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Xu, Liuyun & Spence, Seymour M.J., 2024. "Collapse reliability of wind-excited reinforced concrete structures by stratified sampling and nonlinear dynamic analysis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    13. Huang, Xiubing & Wang, Naiyu, 2024. "An adaptive nested dynamic downscaling strategy of wind-field for real-time risk forecast of power transmission systems during tropical cyclones," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Liang, Zhenglin & Jiang, Chen & Sun, Muxia & Xue, Zongqi & Li, Yan-Fu, 2023. "Resilience analysis for confronting the spreading risk of contagious diseases," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    15. Dong, Zhengcheng & Tian, Meng & Li, Xin & Lai, Jingang & Tang, Ruoli, 2022. "Mitigating cascading failures of spatially embedded cyber–physical power systems by adding additional information links," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. D'Urso, Diego & Chiacchio, Ferdinando & Cavalieri, Salvatore & Gambadoro, Salvatore & Khodayee, Soheyl Moheb, 2024. "Predictive maintenance of standalone steel industrial components powered by a dynamic reliability digital twin model with artificial intelligence," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Wang, Jian & Gao, Shibin & Yu, Long & Zhang, Dongkai & Xie, Chenlin & Chen, Ke & Kou, Lei, 2023. "Data-driven lightning-related failure risk prediction of overhead contact lines based on Bayesian network with spatiotemporal fragility model," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    18. Xu-Yang Cao, 2023. "An Iterative PSD-Based Procedure for the Gaussian Stochastic Earthquake Model with Combined Intensity and Frequency Nonstationarities: Its Application into Precast Concrete Structures," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    19. Hongyan Dui & Yuheng Yang & Yun-an Zhang & Yawen Zhu, 2022. "Recovery Analysis and Maintenance Priority of Metro Networks Based on Importance Measure," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
    20. Hong, Xu & Wan, Zhiqiang & Chen, Jianbing, 2023. "Parallel assessment of the tropical cyclone wind hazard at multiple locations using the probability density evolution method integrated with the change of probability measure," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.