IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v189y2019icp196-209.html
   My bibliography  Save this article

New statistical formulations for determination of qualification test plans of safety instrumented systems (SIS) subject to low/high operational demands

Author

Listed:
  • Khalil, Y.F.

Abstract

This paper aims to develop new statistical formulations to design efficient reliability demonstration test (RDT) plans for electrical/electronic and programmable electronic (E/E/ES) safety instrumented systems (SIS) subject to requirements of IEC 61508-1 (2010) standard.11IEC 61508-1:2010. Functional safety of electrical/electronic/programmable electronic (E/E/ES) safety-related systems. Source: http://www.iec.ch/functionalsafety/standards/ A case study is presented to show how the proposed statistical formulations can be employed to design RDT plans to validate whether SIS target mission reliability (TMR) can be met under a specified confidence level. Discussions includes trade-offs between test duration and number of units on test and sensitivity studies showing how the demonstrated reliability at end of mission life is impacted by SIS operational mode and key statistical parameters. The major contributions that this research offers are: (i) A framework to guide reliability practitioners in applying the proposed statistical formulations to design optimum RDT plans and articulate mission reliability statements (MRS) to support regulatory certification of new SIS designs. (ii) A methodology, demonstrated by a practical case study, to show how RDT plans can be designed to meet targets set by the applicable standards. The developed framework is robust and can support certification of safety systems in a wide variety of industrial applications.

Suggested Citation

  • Khalil, Y.F., 2019. "New statistical formulations for determination of qualification test plans of safety instrumented systems (SIS) subject to low/high operational demands," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 196-209.
  • Handle: RePEc:eee:reensy:v:189:y:2019:i:c:p:196-209
    DOI: 10.1016/j.ress.2019.04.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201831055X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.04.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleyner, Andre & Sandborn, Peter, 2008. "Minimizing life cycle cost by managing product reliability via validation plan and warranty return cost," International Journal of Production Economics, Elsevier, vol. 112(2), pages 796-807, April.
    2. Kuban Altinel, Ismail, 1994. "The design of optimum component test plans in the demonstration of system reliability," European Journal of Operational Research, Elsevier, vol. 78(3), pages 318-333, November.
    3. Luo, Wei & Zhang, Chun-hua & Chen, Xun & Tan, Yuan-yuan, 2015. "Accelerated reliability demonstration under competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 75-84.
    4. Li, Xiaoyang & Chen, Wenbin & Sun, Fuqiang & Liao, Haitao & Kang, Rui & Li, Renqing, 2018. "Bayesian accelerated acceptance sampling plans for a lognormal lifetime distribution under Type-I censoring," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 78-86.
    5. Cai, Baoping & Liu, Yu & Fan, Qian, 2016. "A multiphase dynamic Bayesian networks methodology for the determination of safety integrity levels," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 105-115.
    6. M. Kumar & P. N. Bajeel, 2018. "Design of component reliability test plan for a series system having time dependent testing cost with the presence of covariates," Computational Statistics, Springer, vol. 33(3), pages 1267-1292, September.
    7. Feyzioglu, Orhan & Kuban Altinel, I. & Ozekici, Suleyman, 2006. "The design of optimum component test plans for system reliability," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3099-3112, July.
    8. Ahmed, Hussam & Chateauneuf, Alaa, 2014. "Optimal number of tests to achieve and validate product reliability," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 242-250.
    9. Ding, Long & Wang, Hong & Jiang, Jin & Xu, Aidong, 2017. "SIL verification for SRS with diverse redundancy based on system degradation using reliability block diagram," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 170-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Huiling & Yang, Jun & Xu, Houbao & Zhao, Yu, 2023. "Reliability acceptance sampling plan for degraded products subject to Wiener process with unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    2. Cai, Baoping & Li, Wenchao & Liu, Yiliu & Shao, Xiaoyan & Zhang, Yanping & Zhao, Yi & Liu, Zengkai & Ji, Renjie & Liu, Yonghong, 2021. "Modeling for evaluation of safety instrumented systems with heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Zhou, Chongwen & Chinnam, Ratna Babu & Dalkiran, Evrim & Korostelev, Alexander, 2017. "Bayesian approach to hazard rate models for early detection of warranty and reliability problems using upstream supply chain information," International Journal of Production Economics, Elsevier, vol. 193(C), pages 316-331.
    4. Chien, Yu-Hung, 2010. "Optimal age for preventive replacement under a combined fully renewable free replacement with a pro-rata warranty," International Journal of Production Economics, Elsevier, vol. 124(1), pages 198-205, March.
    5. Eva Segura & Rafael Morales & José A. Somolinos, 2017. "Cost Assessment Methodology and Economic Viability of Tidal Energy Projects," Energies, MDPI, vol. 10(11), pages 1-27, November.
    6. Zheng Tang & Yijia Li & Xiaofeng Hu & Huanggang Wu, 2019. "Risk Analysis of Urban Dirty Bomb Attacking Based on Bayesian Network," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    7. Zhou, P. & Jin, R.Y. & Fan, L.W., 2016. "Reliability and economic evaluation of power system with renewables: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 537-547.
    8. Starling, James K. & Mastrangelo, Christina & Choe, Youngjun, 2021. "Improving Weibull distribution estimation for generalized Type I censored data using modified SMOTE," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    9. Mobin, Mohammadsadegh & Li, Zhaojun & Cheraghi, S. Hossein & Wu, Gongyu, 2019. "An approach for design Verification and Validation planning and optimization for new product reliability improvement," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    10. Kuban Altinel, I. & Ozekici, Suleyman, 1998. "Optimum component test plans for systems with dependent components," European Journal of Operational Research, Elsevier, vol. 111(1), pages 175-186, November.
    11. Zhaojun Yang & Xiaoxu Li & Chuanhai Chen & Hongxun Zhao & Dingyu Yang & Jinyan Guo & Wei Luo, 2019. "Reliability assessment of the spindle systems with a competing risk model," Journal of Risk and Reliability, , vol. 233(2), pages 226-234, April.
    12. Wu, Shuo-Jye & Huang, Syuan-Rong, 2017. "Planning two or more level constant-stress accelerated life tests with competing risks," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 1-8.
    13. Rufo, M.J. & Martín, J. & Pérez, C.J., 2016. "A Bayesian negotiation model for quality and price in a multi-consumer context," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 132-141.
    14. Kiswendsida Abel Ouedraogo & Julie Beugin & El‐Miloudi El‐Koursi & Joffrey Clarhaut & Dominique Renaux & Frederic Lisiecki, 2018. "Toward an Application Guide for Safety Integrity Level Allocation in Railway Systems," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1634-1655, August.
    15. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    16. Ossai, Chinedu I., 2017. "Optimal renewable energy generation – Approaches for managing ageing assets mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 269-280.
    17. Sabnis S. V. & Agnihothram G., 2007. "Reliability Test Plans for Series Systems in the Presence of Covariates," Stochastics and Quality Control, De Gruyter, vol. 22(2), pages 197-209, January.
    18. Ma, Zhonghai & Wang, Shaoping & Ruiz, Cesar & Zhang, Chao & Liao, Haitao & Pohl, Edward, 2020. "Reliability estimation from two types of accelerated testing data considering measurement error," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    19. Wu, Shaomin & Longhurst, Phil, 2011. "Optimising age-replacement and extended non-renewing warranty policies in lifecycle costing," International Journal of Production Economics, Elsevier, vol. 130(2), pages 262-267, April.
    20. Nafissa Jibet & Pascal Le Masson & Benoit Weil & Blandine Chazelle & Dominique Laousse, 2023. "Renovating engineering departements' creation heritage to meet contemporary challenges: frugal validation patterns and constructive proof logics for new engineering rules," Post-Print hal-04074841, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:189:y:2019:i:c:p:196-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.