IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v7y2016i1d10.1007_s13198-015-0357-3.html
   My bibliography  Save this article

Modeling and evaluation of product quality at conceptual design stage

Author

Listed:
  • Shashank Gupta

    (Birla Institute of Technology and Science, Pilani)

  • Srinivas Kota

    (Birla Institute of Technology and Science, Pilani)

  • Rajesh P. Mishra

    (Birla Institute of Technology and Science, Pilani)

Abstract

Quality of a product is a function of many variables. These have been identified, and modeled in terms of quality digraph. The nodes in the digraph represent the quality features and the edges represent the degree of influence among these. An equivalent matrix representation of the digraph is developed to define the product system quality function (PSQF). Quality index (QI) is defined as a ratio of the actual to the ideal values of PSQF. The designer may use this index to evaluate and compare alternative designs and choose the best among these from the perspective of quality. A high value of QI indicates that the product structure is closer to the ideal state. The presented model is illustrated with an example.

Suggested Citation

  • Shashank Gupta & Srinivas Kota & Rajesh P. Mishra, 2016. "Modeling and evaluation of product quality at conceptual design stage," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 163-177, December.
  • Handle: RePEc:spr:ijsaem:v:7:y:2016:i:1:d:10.1007_s13198-015-0357-3
    DOI: 10.1007/s13198-015-0357-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-015-0357-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-015-0357-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dekkers, Rob & Chang, C.M. & Kreutzfeldt, Jochen, 2013. "The interface between “product design and engineering” and manufacturing: A review of the literature and empirical evidence," International Journal of Production Economics, Elsevier, vol. 144(1), pages 316-333.
    2. Gao, Xueli & Barabady, Javad & Markeset, Tore, 2010. "An approach for prediction of petroleum production facility performance considering Arctic influence factors," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 837-846.
    3. Zhongsheng Hua & Jie Yang & Solomani Coulibaly & Bin Zhang, 2006. "Integration TRIZ with problem-solving tools: a literature review from 1995 to 2006," International Journal of Business Innovation and Research, Inderscience Enterprises Ltd, vol. 1(1/2), pages 111-128.
    4. Bruno Gagnon & Roland Leduc & Luc Savard, 2010. "From a conventional to a sustainable engineering design process: different shades of sustainability," Cahiers de recherche 10-09, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    5. Ahmed, Hussam & Chateauneuf, Alaa, 2014. "Optimal number of tests to achieve and validate product reliability," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 242-250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eichhorn Colombo, Konrad W., 2023. "Financial resilience analysis of floating production, storage and offloading plant operated in Norwegian Arctic region: Case study using inter-/transdisciplinary system dynamics modeling and simulatio," Energy, Elsevier, vol. 268(C).
    2. Rufo, M.J. & Martín, J. & Pérez, C.J., 2016. "A Bayesian negotiation model for quality and price in a multi-consumer context," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 132-141.
    3. Cannas, Violetta G. & Gosling, Jonathan & Pero, Margherita & Rossi, Tommaso, 2020. "Determinants for order-fulfilment strategies in engineer-to-order companies: Insights from the machinery industry," International Journal of Production Economics, Elsevier, vol. 228(C).
    4. Zhu, Andy Yunlong & von Zedtwitz, Max & Assimakopoulos, Dimitris & Fernandes, Kiran, 2016. "The impact of organizational culture on Concurrent Engineering, Design-for-Safety, and product safety performance," International Journal of Production Economics, Elsevier, vol. 176(C), pages 69-81.
    5. Barabadi, Abbas & Tobias Gudmestad, Ove & Barabady, Javad, 2015. "RAMS data collection under Arctic conditions," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 92-99.
    6. Osiro, Lauro & Lima-Junior, Francisco R. & Carpinetti, Luiz Cesar R., 2014. "A fuzzy logic approach to supplier evaluation for development," International Journal of Production Economics, Elsevier, vol. 153(C), pages 95-112.
    7. Janina Milena Goldberg & Holger Schiele, 2019. "Innovating With Dominant Suppliers: Lessons From The Race For Laser Light," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 24(01), pages 1-26, January.
    8. Sonal, S.D. & Ammanagi, S & Kanjilal, O & Manohar, C.S., 2018. "Experimental estimation of time variant system reliability of vibrating structures based on subset simulation with Markov chain splitting," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 55-68.
    9. Hamzeh Soltanali & A.H.S Garmabaki & Adithya Thaduri & Aditya Parida & Uday Kumar & Abbas Rohani, 2019. "Sustainable production process: An application of reliability, availability, and maintainability methodologies in automotive manufacturing," Journal of Risk and Reliability, , vol. 233(4), pages 682-697, August.
    10. Naseri, Masoud & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2016. "Availability assessment of oil and gas processing plants operating under dynamic Arctic weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 66-82.
    11. Rezgar Zaki & Abbas Barabadi & Javad Barabady & Ali Nouri Qarahasanlou, 2022. "Observed and unobserved heterogeneity in failure data analysis," Journal of Risk and Reliability, , vol. 236(1), pages 194-207, February.
    12. Masoud Naseri & Javad Barabady, 2016. "On RAM performance of production facilities operating under the Barents Sea harsh environmental conditions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(3), pages 273-298, September.
    13. Ali N Qarahasanlou & Abbas Barabadi & Yonas Z Ayele, 2018. "Production performance analysis during operation phase: A case study," Journal of Risk and Reliability, , vol. 232(6), pages 559-575, December.
    14. Domenica Lavorato & Rita Lamboglia & Daniela Mancini, 2021. "La relazione tra rischio reputazionale e controllo-guida: possibili linee di ricerca," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2021(suppl. 2), pages 39-64.
    15. Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2011. "A methodology for throughput capacity analysis of a production facility considering environment condition," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1637-1646.
    16. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    17. Rezgar Zaki & Abbas Barabadi & Ali Nouri Qarahasanlou & A. H. S. Garmabaki, 2019. "A mixture frailty model for maintainability analysis of mechanical components: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1646-1653, December.
    18. Sohoin, Rodrigue & El Hami, Abdelkhalak & Guerin, Fabrice & Riahi, Hassen & Attaf, Djelali, 2021. "A novel approach based on meta-modeling technique and time transformation function for reliability analysis of upgraded automotive components," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    19. Pero, Margherita & Stößlein, Martin & Cigolini, Roberto, 2015. "Linking product modularity to supply chain integration in the construction and shipbuilding industries," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 602-615.
    20. Khalil, Y.F., 2019. "New statistical formulations for determination of qualification test plans of safety instrumented systems (SIS) subject to low/high operational demands," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 196-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:7:y:2016:i:1:d:10.1007_s13198-015-0357-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.